Evaluation of the Habitual Masticatory Side by Principal Component Analysis.
نویسندگان
چکیده
منابع مشابه
Compression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملRobust Principal Component Analysis with Side Information
The robust principal component analysis (robust PCA) problem has been considered in many machine learning applications, where the goal is to decompose the data matrix to a low rank part plus a sparse residual. While current approaches are developed by only considering the low rank plus sparse structure, in many applications, side information of row and/or column entities may also be given, and ...
متن کاملROBUST PRINCIPAL COMPONENT ANALYSIS? By
This paper is about a curious phenomenon. Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Can we recover each component individually? We prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; ...
متن کاملPrincipal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nihon Hotetsu Shika Gakkai Zasshi
سال: 2003
ISSN: 1883-177X,0389-5386
DOI: 10.2186/jjps.47.95