Evaluating direction-of-change forecasting: Neurofuzzy models vs. neural networks

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating direction-of-change forecasting: Neurofuzzy models vs. neural networks

This paper investigates the nonlinear predictability of technical trading rules based on a recurrent neural network as well as a neurofuzzy model. The efficiency of the trading strategies was considered upon the prediction of the direction of the market in case of NASDAQ and NIKKEI returns. The sample extends over the period 2/8/1971–4/7/1998 while the sub-period 4/8/1998–2/5/2002 has been rese...

متن کامل

Monthly runoff forecasting by means of artificial neural networks (ANNs)

Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...

متن کامل

A Review of Epidemic Forecasting Using Artificial Neural Networks

Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...

متن کامل

Evaluating Density Forecasting Models

Density forecasting in regression is gaining popularity as real world applications demand an estimate of the level of uncertainty in predictions. In this paper we describe the two goals of density forecasting sharpness and calibration. We review the evaluation methods available to a density forecaster to assess each of these goals and we introduce a new evaluation method that allows modelers to...

متن کامل

Short-term Streamflow Forecasting: ARIMA Vs Neural Networks

Streamflow forecasting is very important for water resources management and flood defence. In this paper two forecasting methods are compared: ARIMA versus a multilayer perceptron neural network. This comparison is done by forecasting a streamflow of a Mexican river. Surprising results showed that in a monthly basis, ARIMA has lower prediction errors than this Neural Network. Key-Words: Auto re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2007

ISSN: 0895-7177

DOI: 10.1016/j.mcm.2006.12.011