Estimation of Tempered Stable Lévy Models of Infinite Variation
نویسندگان
چکیده
Truncated realized quadratic variations (TRQV) are among the most widely used high-frequency-based nonparametric methods to estimate volatility of a process in presence jumps. Nevertheless, truncation level is known critically affect its performance, especially infinite variation In this paper, we study optimal level, mean-square error sense, for semiparametric tempered stable Lévy model. We obtain novel closed-form 2nd-order approximation threshold high-frequency setting. As an application, propose new estimation method, which combines iteratively approximate method moment estimator and TRQVs with newly found small-time threshold. The tested via simulations Blumenthal-Getoor index generalized CGMY model and, localization technique, integrated Heston type Our outperform other alternatives proposed literature when working (i.e., constant), or jump intensity Y larger than 3/2 stochastic volatility.
منابع مشابه
Infinite Variation Tempered Stable Ornstein-Uhlenbeck Processes with Discrete Observations
We investigate transition law between consecutive observations of Ornstein-Uhlenbeck processes of infinite variation with tempered stable stationary distribution. Thanks to the Markov autoregressive structure, the transition law can be written in the exact sense as a convolution of three random components; a compound Poisson distribution and two independent tempered stable distributions, one wi...
متن کاملTempered stable and tempered infinitely divisible GARCH models
In this paper, we introduce a new GARCH model with an infinitely divisible distributed innovation, referred to as the rapidly decreasing tempered stable (RDTS) GARCH model. This model allows the description of some stylized empirical facts observed for stock and index returns, such as volatility clustering, the non-zero skewness and excess kurtosis for the residual distribution. Furthermore, we...
متن کاملEstimation of Value at Risk (VaR) Based On Lévy-GARCH Models: Evidence from Tehran Stock Exchange
This paper aims to estimate the Value-at-Risk (VaR) using GARCH type models with improved return distribution. Value at Risk (VaR) is an essential benchmark for measuring the risk of financial markets quantitatively. The parametric method, historical simulation, and Monte Carlo simulation have been proposed in several financial mathematics and engineering studies to calculate VaR, that each of ...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولSpectral Iterative Estimation of Tempered Stable Stochastic Volatility Models and Option Pricing
This paper addresses alternative option pricing models and their estimation. The stock price dynamics is modeled by taking into account both stochastic volatility and jumps. Jumps are mimiced by the tempered stable process and stochastic volatility is introduced by time changing the stochastic process. We propose a characteristic function based iterative estimation method, which overcomes the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methodology and Computing in Applied Probability
سال: 2022
ISSN: ['1387-5841', '1573-7713']
DOI: https://doi.org/10.1007/s11009-022-09940-7