Estimation of integrated squared density derivatives

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On predictive density estimation for location families under integrated squared error loss

Tatsuya Kubokawa, Éric Marchand, William E. Strawderman a Department of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN (e-mail: [email protected]) b Université de Sherbrooke, Département de mathématiques, Sherbrooke Qc, CANADA, J1K 2R1 (e-mail: [email protected]) c Rutgers University, Department of Statistics and Biostatistics, 501 Hill Center, Bu...

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables

Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.

متن کامل

The Law of the Iterated Logarithm for the Integrated Squared Deviation of a Kernel Density Estimator

Let f n,K denote a kernel estimator of a density f in R such that R f p (x)dx<∞ for some p>2. It is shown, under quite general conditions on the kernel K and on the window sizes, that the centered integrated squared deviation of f n,K from its mean, f n,K −Ef n,K 2 2 −Ef n,K −Ef n,K 2 2 satisfies a law of the iterated logarithm. This is then used to obtain an LIL for the deviation from the true...

متن کامل

Minimax Estimation of a Bounded Squared Mean

Consider a normal model with unknown mean bounded by a known constant. This paper deals with minimax estimation of the squared mean. We establish an expression for the asymptotic minimax risk. This result is applied in nonparametric estimation of quadratic functionals.

متن کامل

Learning principal directions: Integrated-squared-error minimization

A common derivation of principal component analysis (PCA) is based on the minimization of the squared-error between centered data and linear model, corresponding to the reconstruction error. In fact, minimizing the squared-error leads to principal subspace analysis where scaled and rotated principal axes of a set of observed data, are estimated. In this paper, we introduce and investigate an al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 1987

ISSN: 0167-7152

DOI: 10.1016/0167-7152(87)90083-6