Estimation in Logistic Normal Linear Models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Numerical integration in logistic-normal models

When estimating logistic-normal models, the integral appearing in the marginal likelihood is analytically intractable, so that numerical methods such as GaussHermite quadrature (GH) are needed. When the dimensionality increases, the number of quadrature points becomes too high. A possible solution can be found among the Quasi-Monte Carlo (QMC) methods, because these techniques yield quite good ...

متن کامل

Scalable Inference for Logistic-Normal Topic Models

Logistic-normal topic models can effectively discover correlation structures among latent topics. However, their inference remains a challenge because of the non-conjugacy between the logistic-normal prior and multinomial topic mixing proportions. Existing algorithms either make restricting mean-field assumptions or are not scalable to large-scale applications. This paper presents a partially c...

متن کامل

Variance estimation for multivariate normal dynamic linear models

In multivariate normal dynamic and state-space linear models the observational variance matrix is usually assumed known. Apart from a handful of special cases, estimation procedures that allow for the variance of the observational errors to be left unspecified are not widely available. The foundation of this paper is the general multivariate normal dynamic linear model with unknown but fixed ob...

متن کامل

Best Linear Unbiased Estimation in Linear Models

where X is a known n × p model matrix, the vector y is an observable ndimensional random vector, β is a p × 1 vector of unknown parameters, and ε is an unobservable vector of random errors with expectation E(ε) = 0, and covariance matrix cov(ε) = σV, where σ > 0 is an unknown constant. The nonnegative definite (possibly singular) matrix V is known. In our considerations σ has no role and hence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Japanese Journal of Biometrics

سال: 1991

ISSN: 0918-4430,2185-6494

DOI: 10.5691/jjb.12.99