Estimation in Logistic Normal Linear Models
نویسندگان
چکیده
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملNumerical integration in logistic-normal models
When estimating logistic-normal models, the integral appearing in the marginal likelihood is analytically intractable, so that numerical methods such as GaussHermite quadrature (GH) are needed. When the dimensionality increases, the number of quadrature points becomes too high. A possible solution can be found among the Quasi-Monte Carlo (QMC) methods, because these techniques yield quite good ...
متن کاملScalable Inference for Logistic-Normal Topic Models
Logistic-normal topic models can effectively discover correlation structures among latent topics. However, their inference remains a challenge because of the non-conjugacy between the logistic-normal prior and multinomial topic mixing proportions. Existing algorithms either make restricting mean-field assumptions or are not scalable to large-scale applications. This paper presents a partially c...
متن کاملVariance estimation for multivariate normal dynamic linear models
In multivariate normal dynamic and state-space linear models the observational variance matrix is usually assumed known. Apart from a handful of special cases, estimation procedures that allow for the variance of the observational errors to be left unspecified are not widely available. The foundation of this paper is the general multivariate normal dynamic linear model with unknown but fixed ob...
متن کاملBest Linear Unbiased Estimation in Linear Models
where X is a known n × p model matrix, the vector y is an observable ndimensional random vector, β is a p × 1 vector of unknown parameters, and ε is an unobservable vector of random errors with expectation E(ε) = 0, and covariance matrix cov(ε) = σV, where σ > 0 is an unknown constant. The nonnegative definite (possibly singular) matrix V is known. In our considerations σ has no role and hence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese Journal of Biometrics
سال: 1991
ISSN: 0918-4430,2185-6494
DOI: 10.5691/jjb.12.99