Estimating Variance Function with Kernel Machine

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the variance of a kernel density estimation

This article proposes an interval-valued extension of kernel density estimation. We show that the imprecision of this interval-valued estimation is highly correlated with the variance of the density estimation induced by the statistical variations of the set of observations.

متن کامل

Estimating the Variance 1 Running head: ESTIMATING THE VARIANCE Estimating the Variance in Before-After Studies

Problem: To simplify the computation of the variance in before-after studies, it is generally assumed that the observed crash data for each entity (or observation) are Poisson distributed. Given the characteristics of this distribution, the observed value ( i x ) for each entity is implicitly made equal to its variance. However, the variance should be estimated using the conditional properties ...

متن کامل

Optimal variance estimation without estimating the mean function

We study the least squares estimator in the residual variance estimation context. We show that the mean squared differences of paired observations are asymptotically normally distributed. We further establish that, by regressing the mean squared differences of these paired observations on the squared distances between paired covariates via a simple least squares procedure, the resulting varianc...

متن کامل

Learning with kernel machine architectures

This thesis studies the problem of supervised learning using a family of machines, namely kernel learning machines. A number of standard learning methods belong to this family, such as Regularization Networks (RN) and Support Vector Machines (SVM). The thesis presents a theoretical justification of these machines within a unified framework based on the statistical learning theory of Vapnik. The...

متن کامل

Estimating the Asymptotic Variance with Batch Means

We show that there is no batch-means estimation procedure for consistently estimating the asymptotic variance when the number of batches is held fixed as the run length increases. This result suggests that the number of batches should increase as the run length increases for sequential stopping rules based on batch means.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications for Statistical Applications and Methods

سال: 2009

ISSN: 2287-7843

DOI: 10.5351/ckss.2009.16.2.383