Estimating extreme quantiles under random truncation
نویسندگان
چکیده
منابع مشابه
Estimating extreme quantiles under random truncation
The goal of this paper is to provide estimators of the tail index and extreme quantiles of a heavy-tailed random variable when it is righttruncated. The weak consistency and asymptotic normality of the estimators are established. The finite sample performance of our estimators is illustrated on a simulation study and we showcase our estimators on a real set of failure data. keywords: Asymptotic...
متن کاملEstimating the conditional extreme-value index under random right-censoring
In extreme value theory, the extreme-value index is a parameter that controls the behavior of a cumulative distribution function in its right tail. Estimating this parameter is thus the first step when tackling a number of problems related to extreme events. In this paper, we introduce an estimator of the extreme-value index in the presence of a random covariate when the response variable is ri...
متن کاملA Bayesian Approach for Estimating Extreme Quantiles under a Semiparametric Mixture Model By
In this paper we propose an additive mixture model, where one component is the Generalized Pareto distribution (GPD) that allows us to estimate extreme quantiles. GPD plays an important role in modeling extreme quantiles for the wide class of distributions belonging to the maximum domain of attraction of an extreme value model. One of the main diffi culty with this modeling approach is the choi...
متن کاملNonparametric estimation of the conditional tail index and extreme quantiles under random censoring
In this paper, we investigate the estimation of the tail index and extreme quantiles of a heavy-tailed distribution when some covariate information is available and the data are randomly right-censored. We construct several estimators by combining a moving-window technique (for tackling the covariate information) and the inverse probability-of-censoring weighting method, and we establish their ...
متن کاملEstimation of Extreme Quantiles for Functions of Dependent Random Variables
We propose a new method for estimating the extreme quantiles for a function of several dependent random variables. In contrast to the conventional approach based on extreme value theory, we do not impose the condition that the tail of the underlying distribution admits an approximate parametric form, and, furthermore, our estimation makes use of the full observed data. The proposed method is se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TEST
سال: 2014
ISSN: 1133-0686,1863-8260
DOI: 10.1007/s11749-014-0403-5