Essentially Smooth Lipschitz Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essentially Smooth Lipschitz Functions

In this paper we address some of the most fundamental questions regarding the differentiability structure of locally Lipschitz functions defined on separable Banach spaces. For example, we examine the relationship between integrability, D-representability, and strict differentiability. In addition to this, we show that on any separable Banach space there is a significant family of locally Lipsc...

متن کامل

Null Sets and Essentially Smooth Lipschitz Functions

In this paper we extend the notion of a Lebesgue-null set to a notion which is valid in any completely metrizable Abelian topological group. We then use this deenition to introduce and study the class of essentially smooth functions. These are, roughly speaking, those Lipschitz functions which are smooth (in each direction) almost everywhere.

متن کامل

Essentially Strictly Differentiable Lipschitz Functions

In this paper we address some of the most fundamental questions regarding the diierentiability structure of locally Lipschitz functions deened on Banach spaces. For example, we examine the relationship between inte-grability, D-representability and strict diierentiability. In addition to this, we show that on a large class of Banach spaces there is a signiicant family of locally Lipschitz funct...

متن کامل

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

Consider the following setting. Let Y = f∗(X) +W, where X is a random variable (r.v.) on X = [0, 1], W is a r.v. on Y = R, independent of X and satisfying E[W ] = 0 and E[W ] = σ <∞. Finally let f∗ : [0, 1]→ R be a function satisfying |f∗(t)− f∗(s)| ≤ L|t− s|, ∀t, s ∈ [0, 1], (1) where L > 0 is a constant. A function satisfying condition (1) is said to be Lipschitz on [0, 1]. Notice that such a...

متن کامل

Smooth Approximation for Intrinsic Lipschitz Functions in the Heisenberg Group

We characterize intrinsic Lipschitz functions as maps which can be approximated by a sequence of smooth maps, with pointwise convergent intrinsic gradient. We also provide an estimate of the Lipschitz constant of an intrinsic Lipschitz function in terms of the L∞−norm of its intrinsic gradient.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1997

ISSN: 0022-1236

DOI: 10.1006/jfan.1997.3101