Essential spectrum of non-self-adjoint singular matrix differential operators
نویسندگان
چکیده
منابع مشابه
Non-self-adjoint Differential Operators
We describe methods which have been used to analyze the spectrum of non-self-adjoint differential operators, emphasizing the differences from the self-adjoint theory. We find that even in cases in which the eigenfunctions can be determined explicitly, they often do not form a basis; this is closely related to a high degree of instability of the eigenvalues under small perturbations of the opera...
متن کاملAdjoint and self - adjoint differential operators on graphs ∗
A differential operator on a directed graph with weighted edges is characterized as a system of ordinary differential operators. A class of local operators is introduced to clarify which operators should be considered as defined on the graph. When the edge lengths have a positive lower bound, all local self-adjoint extensions of the minimal symmetric operator may be classified by boundary condi...
متن کاملBoundary Conditions for Singular Perturbations of Self-Adjoint Operators
Let A : D(A) ⊆ H → H be an injective self-adjoint operator and let τ : D(A) → X, X a Banach space, be a surjective linear map such that ‖τφ‖X ≤ c ‖Aφ‖H. Supposing that Range (τ ) ∩ H = {0}, we define a family AτΘ of self-adjoint operators which are extensions of the symmetric operator A|{τ=0} . Any φ in the operator domain D(A τ Θ) is characterized by a sort of boundary conditions on its univoc...
متن کاملOn Eigenvalues Problem for Self-adjoint Operators with Singular Perturbations
We investigate the eigengenvalues problem for self-adjoint operators with the singular perturbations. The general results presented here include weakly as well as strongly singular cases. We illustrate these results on two models which correspond to so-called additive strongly singular perturbations.
متن کاملNon-Self-Adjoint Operators and Pseudospectra
The theory of pseudospectra has grown rapidly since its emergence from within numerical analysis around 1990. We describe some of its applications to the stability theory of differential operators, to WKB analysis and even to orthogonal polynomials. Although currently more a way of looking at non-self-adjoint operators than a list of theorems, its future seems to be assured by the growing numbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2017
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2017.02.017