Error estimates for approximations of nonlinear uniformly parabolic equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Estimates for Spatially Discrete Approximations of Semilinear Parabolic Equations with Initial Data of Low Regularity

Semidiscrete finite element methods for a semilinear parabolic equation in Rd, d < 3, were considered by Johnson, Larsson, Thomée, and Wahlbin. With h the discretization parameter, it was proved that, for compatible and bounded initial data in Ha, the convergence rate is essentially 0(h2+a) for t positive, and for a = 0 this was seen to be best possible. Here we shall show that for 0 < a < 2 th...

متن کامل

Error Estimates under Minimal Regularity for Single Step Finite Element Approximations of Parabolic Partial Differential Equations

This paper studies error estimations for a fully discrete, single step finite element scheme for linear parabolic partial differential equations. Convergence in the norm of the solution space is shown and various error estimates in this norm are derived. In contrast to like results in the extant literature, the error estimates are derived in a stronger norm and under minimal regularity assumpti...

متن کامل

Interior error estimates for semi-discrete Galerkin approximations for parabolic equations

The initial boundary value problemfor the heat équation in a domain Q and the corresponding standard Galerkin method is consideied A certain regularity of the initial data in some subdomain Q1 leads to the same regularity of the solution in Q± and for ail times It is shown that the error between the exact solution and the Galerkm approximation is also of (almost) optimal order m the intenor ofQ...

متن کامل

A Posteriori Error Bounds for Reduced Basis Approximations of Nonaffine and Nonlinear Parabolic Partial Differential Equations

We present a posteriori error bounds for reduced basis approximations of parabolic partial differential equations involving (i) a nonaffine dependence on the parameter and (ii) a nonlinear dependence on the field variable. The method employs the Empirical Interpolation Method in order to construct “affine” coefficient-function approximations of the “nonaffine” (or nonlinear) parametrized functi...

متن کامل

Error Estimates for the Discontinuous Galerkin Methods for Parabolic Equations

We analyze the classical discontinuous Galerkin method for a general parabolic equation. Symmetric error estimates for schemes of arbitrary order are presented. The ideas we develop allow us to relax many assumptions freqently required in previous work. For example, we allow different discrete spaces to be used at each time step and do not require the spatial operator to be self adjoint or inde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA

سال: 2014

ISSN: 1021-9722,1420-9004

DOI: 10.1007/s00030-014-0286-x