Error Bounds of a Finite Difference/Spectral Method for the Generalized Time Fractional Cable Equation
نویسندگان
چکیده
We present a finite difference/spectral method for the two-dimensional generalized time fractional cable equation by combining second-order backward difference in and Galerkin spectral space with Legendre polynomials. Through detailed analysis, we demonstrate that scheme is unconditionally stable. The proved to have min{2−α,2−β}-order convergence accuracy smooth solutions, where α,β are two exponents of derivatives. report numerical results confirm our error bounds effectiveness proposed method. This can be applied model diffusion viscoelastic non-Newtonian fluid flow.
منابع مشابه
The new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملA New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation
In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...
متن کاملAnalytical Solution of Generalized Space-Time Fractional Cable Equation
In this paper, we consider generalized space-time fractional cable equation in presence of external source. By using the Fourier-Laplace transform we obtain the Green function in terms of infinite series in H-functions. The fractional moments of the fundamental solution are derived and their asymptotic behavior in the short and long time limit is analyzed. Some previously obtained results are c...
متن کاملError Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation
متن کامل
Implicit RBF Meshless Method for the Solution of Two-dimensional Variable Order Fractional Cable Equation
In the present work, the numerical solution of two-dimensional variable-order fractional cable (VOFC) equation using meshless collocation methods with thin plate spline radial basis functions is considered. In the proposed methods, we first use two schemes of order O(τ2) for the time derivatives and then meshless approach is applied to the space component. Numerical results obtained ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2022
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract6080439