Erratum to Spline interpolation near discontinuities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Spline Interpolation

In this paper, we investigate the problem of designing compact support interpolation kernels for a given class of signals. By using calculus of variations, we simplify the optimization problem from an infinite nonlinear problem to a finite dimensional linear case, and then find the optimum compact support function that best approximates a given filter in the least square sense (l2 norm). The be...

متن کامل

Inverse B-spline interpolation

B-splines provide an accurate and efficient method for interpolating regularly spaced data. In this paper, I study the applicability of B-spline interpolation in the context of the inverse interpolation method for regularizing irregular data. Numerical tests show that, in comparison with lower-order linear interpolation, B-splines lead to a faster iterative conversion in under-determined proble...

متن کامل

Quartic Spline Interpolation

Davis, P. J. Interpolation and approximation, Blaisdell New York 1969 Dikshit,H. P. and Rana, S. S. Cubic Interpolatory splines with non uniform Meshes J. Approx. Theory Vol 45, no4(1985) C. A. Hall and Meyer, W. W. ; Optimal error bounds for cubic spline Interpolation J. Approx. Theory, 58 (1989), 59-67. Kopotun K. A. : Univariate spline equivalence of moduli of smoothness and application . Ma...

متن کامل

INTERPOLATION BY HYPERBOLIC B-SPLINE FUNCTIONS

In this paper we present a new kind of B-splines, called hyperbolic B-splines generated over the space spanned by hyperbolic functions and we use it to interpolate an arbitrary function on a set of points. Numerical tests for illustrating hyperbolic B-spline are presented.

متن کامل

Monotonic Cubic Spline Interpolation

This paper describes the use of cubic splines for interpolating monotonic data sets. Interpolating cubic splines are popular for fitting data because they use low-order polynomials and have C2 continuity, a property that permits them to satisfy a desirable smoothness constraint. Unfortunately, that same constraint often violates another desirable property: monotonicity. The goal of this work is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1974

ISSN: 0021-9045

DOI: 10.1016/0021-9045(74)90100-2