Erratum to: A pRobability Approach to Anomaly Detection with Twin Support Vector Machines
نویسندگان
چکیده
منابع مشابه
A Subspace Approach to Face Detection with Support Vector Machines
We present a subspace approach to face detection with Support Vector Machine (SVMs). A linear SVM classifier is trained as a filter to produce a subspace in which a non-linear SVM classifier with Gaussian kernel is trained for face detection. This makes training easier and results in a very efficient face detection algorithm. Experimental results demonstrate their promising performance compared...
متن کاملRobust Anomaly Detection Using Support Vector Machines
Using the 1998 DARPA BSM data set collected at MIT’s Lincoln Labs to study intrusion detection systems, the performance of robust support vector machines (RSVMs) was compared with that of conventional support vector machines and nearest neighbor classifiers in separating normal usage profiles from intrusive profiles of computer programs. The results indicate the superiority of RSVMs not only in...
متن کاملAn autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection
In the past years, several support vector machines (SVM) novelty detection approaches have been applied on the network intrusion detection field. The main advantage of these approaches is that they can characterize normal traffic even when trained with datasets containing not only normal traffic but also a number of attacks. Unfortunately, these algorithms seem to be accurate only when the norm...
متن کاملProbability Fuzzy Support Vector Machines
In this paper, a model of probability fuzzy support vector machines (PFSVMs) based on the consideration both for fuzzy clustering and probability distributions is proposed. In many applications of traditional support vector machines (SVMs), there are over-fitting problems due to the fact that SVM is sensitive to outliers or noises. In order to solve the problem, the fuzzy support vector machine...
متن کاملSupport Vector Machines Approach to Credit Evaluation
Credit assessment has attracted lots of researchers in financial and banking industry. Recent studies have shown that Artificial Intelligence (AI) methods are competitive to statistical methods for credit assessment. This article applies support vector machines (SVM), a relatively new machine learning technique, to the credit assessment problem for better explanatory power. The structure of SVM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Shanghai Jiaotong University (Science)
سال: 2010
ISSN: 1007-1172,1995-8188
DOI: 10.1007/s12204-010-1082-3