منابع مشابه
Advances in Nucleases Used for Genome Editing
Genome editing is an exciting technology that allows for specific manipulation of complex genomes. While the original tools for genome manipulation had low efficiencies, genome editing tools discovered in the past fifteen years have been widely studied and great efforts have been required to improve their efficiency. This article summarizes how Zinc Finger Nuclease (ZFN), Transcription Activato...
متن کاملGenome Editing in Mice Using TALE Nucleases.
Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be...
متن کاملGenome editing with engineered nucleases in plants.
Numerous examples of successful 'genome editing' now exist. Genome editing uses engineered nucleases as powerful tools to target specific DNA sequences to edit genes precisely in the genomes of both model and crop plants, as well as a variety of other organisms. The DNA-binding domains of zinc finger (ZF) proteins were the first to be used as genome editing tools, in the form of designed ZF nuc...
متن کاملMonomeric site-specific nucleases for genome editing.
Targeted manipulation of complex genomes often requires the introduction of a double-strand break at defined locations by site-specific DNA endonucleases. Here, we describe a monomeric nuclease domain derived from GIY-YIG homing endonucleases for genome-editing applications. Fusion of the GIY-YIG nuclease domain to three-member zinc-finger DNA binding domains generated chimeric GIY-zinc finger ...
متن کاملGene editing of human embryonic stem cells via an engineered baculoviral vector carrying zinc-finger nucleases.
Human embryonic stem (hES) cells are renewable cell sources that have potential applications in regenerative medicine. The development of technologies to produce permanent and site-specific genome modifications is in demand to achieve future medical implementation of hES cells. We report herein that a baculoviral vector (BV) system carrying zinc-finger nucleases (ZFNs) can successfully modify t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Methods
سال: 2012
ISSN: 1548-7091,1548-7105
DOI: 10.1038/nmeth0412-418