Ergodic theorem in variable Lebesgue spaces
نویسندگان
چکیده
منابع مشابه
The Sampling Theorem in Variable Lebesgue Spaces
hold. The facts above are well-known as the classical Shannon sampling theorem initially proved by Ogura [10]. Ashino and Mandai [1] generalized the sampling theorem in Lebesgue spaces L0(R) for 1 < p0 < ∞. Their generalized sampling theorem is the following. Theorem 1.1 ([1]). Let r > 0 and 1 < p0 < ∞. Then for all f ∈ L 0(R) with supp f̂ ⊂ [−rπ, rπ], we have the norm inequality C p r ‖f‖Lp0(Rn...
متن کاملContinuous wavelet transform in variable Lebesgue spaces
In the present note we investigate norm and almost everywhere convergence of the inverse continuous wavelet transform in the variable Lebesgue space. Mathematics Subject Classification (2010): Primary 42C40, Secondary 42C15, 42B08, 42A38, 46B15.
متن کاملA Cantor-lebesgue Theorem with Variable "coefficients"
If {qn} is a lacunary sequence of integers, and if for each n, cn(x) and c-n(x) are trigonometric polynomials of degree n, then {Cn(X)} must tend to zero for almost every x whenever {cn(x)ei?nX + c-n(-x)e-i?'nX} does. We conjecture that a similar result ought to hold even when the sequence {f On} has much slower growth. However, there is a sequence of integers {nj } and trigonometric polynomial...
متن کاملA Mean Ergodic Theorem For Asymptotically Quasi-Nonexpansive Affine Mappings in Banach Spaces Satisfying Opial's Condition
متن کامل
A quantitative Mean Ergodic Theorem for uniformly convex Banach spaces
We provide an explicit uniform bound on the local stability of ergodic averages in uniformly convex Banach spaces. Our result can also be viewed as a finitary version in the sense of T. Tao of the Mean Ergodic Theorem for such spaces and so generalizes similar results obtained for Hilbert spaces by Avigad, Gerhardy and Towsner [1] and T. Tao [11].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Periodica Mathematica Hungarica
سال: 2016
ISSN: 0031-5303,1588-2829
DOI: 10.1007/s10998-016-0125-4