Equivariant algebraic kk-theory and adjointness theorems
نویسندگان
چکیده
منابع مشابه
The Universal Property of Equivariant Kk-theory
Let G be a locally compact, σ-compact group. We prove that the equivariant KK-theory, KK, is the universal category for functors from G-algebras to abelian groups which are stable, homotopy invariant and split-exact. This is a generalization of Higsons characterisation of (non-equivariant) KK-theory.
متن کاملL-index theorems, KK-theory, and connections
Let M be a compact manifold. and D a Dirac type differential operator on M . Let A be a C ∗-algebra. Given a bundle W of A-modules over M (with connection), the operator D can be twisted with this bundle. One can then use a trace on A to define numerical indices of this twisted operator. We prove an explicit formula for this index. Our result does complement the Mishchenko-Fomenko index theorem...
متن کاملL2-index theorems, KK-theory, and connections
Let M be a compact manifold and D a Dirac type differential operator on M . Let A be a C∗-algebra. Given a bundle W (with connection) of A-modules over M , the operator D can be twisted with this bundle. One can then use a trace on A to define numerical indices of this twisted operator. We prove an explicit formula for these indices. Our result does complement the Mishchenko–Fomenko index theor...
متن کاملAlgebraic K-theory of Fredholm Modules and Kk-theory
Kasparov KK-groups KK(A,B) are represented as homotopy groups of the Pedersen-Weibel nonconnective algebraic K-theory spectrum of the additive category of Fredholm (A,B)-bimodules for A and B, respectively, a separable and σ-unital trivially graded real or complex C∗-algebra acted upon by a fixed compact metrizable group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2014
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2013.09.023