Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces
نویسندگان
چکیده
منابع مشابه
Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces
*Correspondence: [email protected] College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, People’s Republic of China Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integralMβ ,ρ ,q on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the a...
متن کاملParabolic Marcinkiewicz integrals on product spaces
In this paper, we study the $L^p$ ($1
متن کاملBoundedness of higher-order Marcinkiewicz-Type integrals
Let A be a function with derivatives of order m and DγA∈ Λ̇β (0 < β < 1, |γ| =m). The authors in the paper proved that ifΩ∈ Ls(Sn−1) (s≥ n/(n−β)) is homogeneous of degree zero and satisfies a vanishing condition, then both the higher-order Marcinkiewicz-type integral μΩ and its variation μ̃ A Ω are bounded from L p(Rn) to Lq(Rn) and from L1(Rn) to Ln/(n−β),∞(Rn), where 1 < p < n/β and 1/q = 1/p− ...
متن کاملRough Marcinkiewicz Integrals On Product Spaces
In this paper, we establish an Lp boundedness result of a class of Marcinkiewicz integral operators on product domains with rough kernels.
متن کاملBoundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
Let [Formula: see text] satisfy that [Formula: see text], for any given [Formula: see text], is an Orlicz function and [Formula: see text] is a Muckenhoupt [Formula: see text] weight uniformly in [Formula: see text]. The Musielak-Orlicz Hardy space [Formula: see text] is defined to be the set of all tempered distributions such that their grand maximal functions belong to the Musielak-Orlicz spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science China Mathematics
سال: 2013
ISSN: 1674-7283,1869-1862
DOI: 10.1007/s11425-013-4754-2