منابع مشابه
On Weyl-Heisenberg orbits of equiangular lines
An element z ∈CPd−1 is called fiducial if {gz : g ∈G} is a set of lines with only one angle between each pair, where G∼= Zd × Zd is the one-dimensional finite Weyl-Heisenberg group modulo its centre. We give a new characterization of fiducial vectors. Using this characterization, we show that the existence of almost flat fiducial vectors implies the existence of certain cyclic difference sets. ...
متن کاملNew Bounds for Equiangular Lines and Spherical Two-Distance Sets
The set of points in a metric space is called an s-distance set if pairwise distances between these points admit only s distinct values. Two-distance spherical sets with the set of scalar products {α,−α}, α ∈ [0, 1), are called equiangular. The problem of determining the maximal size of s-distance sets in various spaces has a long history in mathematics. We determine a new method of bounding th...
متن کاملEquiangular lines, mutually unbiased bases, and spin models
We use difference sets to construct interesting sets of lines in complex space. Using (v, k, 1)-difference sets, we obtain k2−k+1 equiangular lines in Ck when k − 1 is a prime power. Using semiregular relative difference sets with parameters (k, n, k, λ) we construct sets of n + 1 mutually unbiased bases in Ck. We show how to construct these difference sets from commutative semifields and that ...
متن کاملEquiangular Lines and Spherical Codes in Euclidean Space
A family of lines through the origin in Euclidean space is called equiangular if any pair of lines defines the same angle. The problem of estimating the maximum cardinality of such a family in R was extensively studied for the last 70 years. Motivated by a question of Lemmens and Seidel from 1973, in this paper we prove that for every fixed angle θ and sufficiently large n there are at most 2n−...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1973
ISSN: 0021-8693
DOI: 10.1016/0021-8693(73)90123-3