Equation-free dynamic renormalization of a Kardar-Parisi-Zhang-type equation
نویسندگان
چکیده
منابع مشابه
On the Renormalization of the Kardar-parisi-zhang Equation
The Kardar-Parisi-Zhang (KPZ) equation of nonlinear stochastic growth in d dimensions is studied using the mapping onto a system of directed polymers in a quenched random medium. The polymer problem is renormalized exactly in a minimally subtracted perturbation expansion about d = 2. For the KPZ roughening transition in dimensions d > 2, this renormalization group yields the dynamic exponent z⋆...
متن کاملA Pseudo-spectral Method for the Kardar-parisi-zhang Equation
We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang equation in generic spatial dimensions. It is based on a momentum-space discretization of the continuum equation and on a pseudo-spectral approximation of the non-linear term. The method is tested in (1 + 1)and (2 + 1)dimensions, where it is shown to reproduce the current most reliable estimates of the critical exponents b...
متن کاملStrong-coupling phases of the anisotropic Kardar-Parisi-Zhang equation.
We study the anisotropic Kardar-Parisi-Zhang equation using nonperturbative renormalization group methods. In contrast to a previous analysis in the weak-coupling regime, we find the strong-coupling fixed point corresponding to the isotropic rough phase to be always locally stable and unaffected by the anisotropy even at noninteger dimensions. Apart from the well-known weak-coupling and the now...
متن کاملUpper critical dimension of the Kardar-Parisi-Zhang equation.
Numerical results for the directed polymer model in 1+4 dimensions in various types of disorder are presented. The results are obtained for a system size that is considerably larger than considered previously. For the extreme "strong" disorder case (min-max system), associated with the directed percolation model, the expected value of the meandering exponent, ζ=0.5, is clearly revealed, with ve...
متن کاملAnomaly in Numerical Integrations of the Kardar-Parisi-Zhang Equation
The Kardar-Parisi-Zhang ~KPZ! equation @1# has been very successful in describing a class of dynamic nonlinear phenomena. It is applied to a wide range of topics including vapor deposition, bacterial colony growth, directed polymers, and flux lines in superconductors @2,3#. Computational studies have mostly concentrated on simulations of discrete models such as ballistic deposition models, soli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2006
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.73.036703