Epitrochoidal Hypersurfaces in 4-Space
نویسندگان
چکیده
We introduce the epitrochoidal hypersurfaces in four dimensional Euclidean space E^4. serve notations of a geometry Giving definition rotational hypersurface, we define and calculate its differential geometric objects, such as Gauss map curvatures. In end, reveal some relations for curvatures that type hypersurfaces.
منابع مشابه
$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کاملBiharmonic Hypersurfaces in 4-dimensional Space Forms
We investigate proper biharmonic hypersurfaces with at most three distinct principal curvatures in space forms. We obtain the full classification of proper biharmonic hypersurfaces in 4-dimensional space forms.
متن کامل$l_k$-biharmonic spacelike hypersurfaces in minkowski $4$-space $mathbb{e}_1^4$
biharmonic surfaces in euclidean space $mathbb{e}^3$ are firstly studied from a differential geometric point of view by bang-yen chen, who showed that the only biharmonic surfaces are minimal ones. a surface $x : m^2rightarrowmathbb{e}^{3}$ is called biharmonic if $delta^2x=0$, where $delta$ is the laplace operator of $m^2$. we study the $l_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Europan journal of science and technology
سال: 2022
ISSN: ['2148-2683']
DOI: https://doi.org/10.31590/ejosat.1085790