Epireflective subcategories of valuated groups
نویسندگان
چکیده
منابع مشابه
Hereditary, Additive and Divisible Classes in Epireflective Subcategories of Top
Martin Sleziak HAD-classes in epireflective subcategories of Top Introduction Heredity of AD-classes References Basic definitions Hereditary coreflective subcategories of Top A generalization – epireflective subcategories AD-classes and HAD-classes Subcategories of Top All subcategories are assumed to be full and isomorphism-closed. subcategory of Top = class of topological spaces closer under ...
متن کاملUndecidable theories of valuated abelian groups
© Mémoires de la S. M. F., 1984, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملSubgroup theorem for valuated groups and the CSA property
A valuated group with normal forms is a group with an integer-valued length function satisfying some Lyndon’s axioms [Lyn63] and an additional axiom considered by Hurley [Hur80]. We prove a subgroup theorem for valuated groups with normal forms analogous to Grushko-Neumann’s theorem. We study also the CSA property in such groups.
متن کاملThe hereditary monocoreflective subcategories of Abelian groups and R-modules
The non-trivial hereditary monocoreflective subcategories of the Abelian groups are the following ones: {G ∈ ObAb | G is a torsion group, and ∀g ∈ G the exponent of any prime p in the prime factorization of o(g) is at most E(p)}, where E(·) is an arbitrary function from the prime numbers to {0, 1, 2, ...,∞}. (o(·) means the order of an element, and n ≤ ∞ means n < ∞.) This result is dualized to...
متن کاملOn Exchange Axioms for Valuated Matroids and Valuated Delta-Matroids
Two further equivalent axioms are given for valuations of a matroid. Let M = (V,B) be a matroid on a finite set V with the family of bases B. For ω : B → R the following three conditions are equivalent: (V1) ∀B,B′ ∈ B, ∀u ∈ B −B′,∃v ∈ B′ −B: ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v); (V2) ∀B,B′ ∈ B with B 6= B′, ∃u ∈ B −B′,∃v ∈ B′ −B: ω(B) + ω(B′) ≤ ω(B − u+ v) + ω(B′ + u− v); (V3) ∀B,B′ ∈ B, ∀...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1980
ISSN: 0166-8641
DOI: 10.1016/0166-8641(80)90003-6