Envisaging Employee Churn Using MCDM and Machine Learning
نویسندگان
چکیده
Employee categorisation differentiates valuable employees as eighty per cent of profit comes from twenty employees. Also, retention all is quite challenging and incur a cost. Previous studies have focused on employee churn analysis using various machine learning algorithms but missed the an based accomplishments. This paper provides approach categorising to quantify importance multi-criteria decision making (MCDM) techniques, i.e., criteria through inter-criteria correlation (CRITIC) assign relative weights accomplishments fuzzy Measurement Alternatives Ranking according Compromise Solution (MARCOS) method divide into three categories. Followed by executing each category original dataset investigate categorisation. CatBoost, Support Vector Machine, Decision Tree, Random Forest XGradient Boost been used analyse categorised non-categorised accuracy, precision, recall Mathew's Correlation Coefficient (MCC) derive best suitable algorithm for dataset. CatBoost showed results regarding performance measurements are better than datasets.
منابع مشابه
A Survey on Customer Churn Prediction using Machine Learning Techniques
The fast expansion of the market in every sector is leading to superior subscriber base for service providers. Added competitors, novel and innovative business models and enhanced services are increasing the cost of customer acquisition. In such a fast set up, service providers have realized the importance of retaining the on-hand customers. It is therefore essential for the service providers t...
متن کاملthe relationship between using language learning strategies, learners’ optimism, educational status, duration of learning and demotivation
with the growth of more humanistic approaches towards teaching foreign languages, more emphasis has been put on learners’ feelings, emotions and individual differences. one of the issues in teaching and learning english as a foreign language is demotivation. the purpose of this study was to investigate the relationship between the components of language learning strategies, optimism, duration o...
15 صفحه اولAnalysis of Customer Churn prediction in Logistic Industry using Machine Learning
Customer churn prediction in logistics industry is one of the most prominent research topics in recent years. It consists of detecting customers who are likely to cancel a subscription to a service. Recently, logistics market has changed from a rapidly growing market into a state of saturation and fierce competition. The focus of the logistic companies has therefore shifted from building a larg...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Intelligent Automation and Soft Computing
سال: 2022
ISSN: ['2326-005X', '1079-8587']
DOI: https://doi.org/10.32604/iasc.2022.023417