Environment-Friendly Power Scheduling Based on Deep Contextual Reinforcement Learning

نویسندگان

چکیده

A novel approach to power scheduling is introduced, focusing on minimizing both economic and environmental impacts. This method utilizes deep contextual reinforcement learning (RL) within an agent-based simulation environment. Each generating unit treated as independent, heterogeneous agent, the dynamics are formulated Markov decision processes (MDPs). The MDPs then used train a RL model determine optimal schedules. performance of this evaluated across various systems, including small-scale large-scale systems with up 100 units. results demonstrate that proposed exhibits superior scalability in handling larger number

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Vision-based Deep Reinforcement Learning

Recently, Google Deepmind showcased how Deep learning can be used in conjunction with existing Reinforcement Learning (RL) techniques to play Atari games[11], beat a world-class player [14] in the game of Go and solve complicated riddles [3]. Deep learning has been shown to be successful in extracting useful, nonlinear features from high-dimensional media such as images, text, video and audio [...

متن کامل

Deep Reinforcement Learning for Multi-Resource Multi-Machine Job Scheduling

Minimizing job scheduling time is a fundamental issue in data center networks that has been extensively studied in recent years. The incoming jobs require different CPU and memory units, and span different number of time slots. The traditional solution is to design efficient heuristic algorithms with performance guarantee under certain assumptions. In this paper, we improve a recently proposed ...

متن کامل

DeepCAS: A Deep Reinforcement Learning Algorithm for Control-Aware Scheduling

We consider networked control systems consisting of multiple independent closed-loop control subsystems, operating over a shared communication network. Such systems are ubiquitous in cyber-physical systems, Internet of Things, and large-scale industrial systems. In many large-scale settings, the size of the communication network is smaller than the size of the system. In consequence, scheduling...

متن کامل

Reinforcement Learning with Deep Energy-Based Policies

We propose a method for learning expressive energy-based policies for continuous states and actions, which has been feasible only in tabular domains before. We apply our method to learning maximum entropy policies, resulting into a new algorithm, called soft Q-learning, that expresses the optimal policy via a Boltzmann distribution. We use the recently proposed amortized Stein variational gradi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16165920