Enumerations for Compositions and Complete Homogeneous Symmetric Polynomial
نویسندگان
چکیده
منابع مشابه
Ribbons and Homogeneous Symmetric Functions
We demonstrate an elegant combinatorial formula for the operation which adds a column on the homogeneous symmetric functions when this function acts on the Schur basis. A q-analog of this formula adds a column on the Hall-Littlewood basis. Résumé. Nous demontrons une formule élégante et combinatoire pour l’opérateur qui ajoute une colonne sur les fonctions symétriques homogène quand cet opérate...
متن کاملSymmetric Homogeneous Triangle Inequalities
A brief scan through the problem columns of various mathematical journals shows a continual outpouring of proposed problems involving what can be roughly described as “triangle inequalities”. A few examples will suffice to indicate the flavor of these perennial favorites: Let the sides of a triangle be a, b, c and let the angles be A, B, C. Let r and R be the inradius and circumradius, respecti...
متن کاملThe Magic Square and Symmetric Compositions Ii
Abstract. The construction of Freudenthal’s Magic Square, which contains the exceptional simple Lie algebras of types F4, E6, E7 and E8, in terms of symmetric composition algebras is further developed here. The para-Hurwitz algebras, which form a subclass of the symmetric composition algebras, will be defined, in the split case, in terms of the natural two dimensional module for the simple Lie ...
متن کاملAn efficient symmetric polynomial-based key establishment protocol for wireless sensor networks
An essential requirement for providing secure services in wireless sensor networks is the ability to establish pairwise keys among sensors. Due to resource constraints on the sensors, the key establishment scheme should not create significant overhead. To date, several key establishment schemes have been proposed. Some of these have appropriate connectivity and resistance against key exposure, ...
متن کاملPerturbation theory for homogeneous polynomial eigenvalue problems
We consider polynomial eigenvalue problems P(A, α, β)x = 0 in which the matrix polynomial is homogeneous in the eigenvalue (α, β) ∈ C2. In this framework infinite eigenvalues are on the same footing as finite eigenvalues. We view the problem in projective spaces to avoid normalization of the eigenpairs. We show that a polynomial eigenvalue problem is wellposed when its eigenvalues are simple. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics Research
سال: 2015
ISSN: 1916-9809,1916-9795
DOI: 10.5539/jmr.v7n2p1