Enumerating permutation polynomials II: k-cycles with minimal degree
نویسندگان
چکیده
منابع مشابه
Enumerating permutation polynomials II: k-cycles with minimal degree
We consider the function m[k](q) that counts the number of cycle permutations of a finite field Fq of fixed length k such that their permutation polynomial has the smallest possible degree. We prove the upper–bound m[k](q) ≤ (k−1)!(q(q−1))/k for char(Fq) > e(k−3)/e and the lower–bound m[k](q) ≥ φ(k)(q(q−1))/k for q ≡ 1 (mod k). This is done by establishing a connection with the Fq–solutions of ...
متن کاملEnumerating permutation polynomials over finite fields by degree II
This note is a continuation of a paper by the same authors that appeared in 2002 in the same journal. First we extend the method of the previous paper proving an asymptotic formula for the number of permutations for which the associated permutation polynomial has d coefficients in specified fixed positions equal to 0. This also applies to the function Nq,d that counts the number of permutations...
متن کاملEnumerating Permutation Polynomials I:Permutations with Non-Maximal Degree
Let C be a conjugation class of permutations of a finite field Fq. We consider the function NCðqÞ defined as the number of permutations in C for which the associated permutation polynomial has degree 5q 2. In 1969, Wells proved a formula for N1⁄23 ðqÞ where 1⁄2k denotes the conjugation class of k-cycles. We will prove formulas for N1⁄2k ðqÞ where k 1⁄4 4; 5; 6 and for the classes of permutation...
متن کاملEnumerating permutation polynomials
We consider the problem of enumerating polynomials over Fq, that have certain coefficients prescribed to given values and permute certain substructures of Fq. In particular, we are interested in the group of N -th roots of unity and in the submodules of Fq. We employ the techniques of Konyagin and Pappalardi to obtain results that are similar to their results in [Finite Fields and their Applica...
متن کاملEnumerating Permutation Polynomials over Finite Fields by Degree
fσ has the property that fσ(a) = σ(a) for every a ∈ Fq and this explains its name. For an account of the basic properties of permutation polynomials we refer to the book of Lidl and Niederreiter [5]. From the definition, it follows that for every σ ∂(fσ) ≤ q − 2. A variety of problems and questions regarding Permutation polynomials have been posed by Lidl and Mullen in [3, 4]. Among these there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 2004
ISSN: 1071-5797
DOI: 10.1016/s1071-5797(03)00044-3