Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entire spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space

which gives an isometric embedding of the hyperbolic space H into R. Hano and Nomizu [11] were probably the first to observe the non-uniqueness of isometric embeddings of H in R by constructing other (geometrically distinct) entire solutions of (1.1)–(1.2) for n 1⁄4 2 (and c1 1) using methods of ordinary di¤erential equations. Using the theory of Monge-Ampère equations, A.-M. Li [12] studied en...

متن کامل

Interior Estimates and Longtime Solutions for Mean Curvature Flow of Noncompact Spacelike Hypersurfaces in Minkowski Space

Spacelike hypersurfaces with prescribed mean curvature have played a major role in the study of Lorentzian manifolds Maximal mean curvature zero hypersurfaces were used in the rst proof of the positive mass theorem Constant mean curvature hypersurfaces provide convenient time gauges for the Einstein equations For a survey of results we refer to In and it was shown that entire solutions of the m...

متن کامل

A Bernstein theorem for complete spacelike constant mean curvature hypersurfaces in Minkowski space

We obtain a gradient estimate for the Gauss maps from complete spacelike constant mean curvature hypersurfaces in Minkowski space into the hyperbolic space. As applications, we prove a Bernstein theorem which says that if the image of the Gauss map is bounded from one side, then the spacelike constant mean curvature hypersurface must be linear. This result extends the previous theorems obtained...

متن کامل

Hypersurfaces of Prescribed Gauss Curvature in Exterior Domains

We prove an existence theorem for convex hypersurfaces of prescribed Gauß curvature in the complement of a compact set in Euclidean space which are close to a cone.

متن کامل

$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$

Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2006

ISSN: 0075-4102,1435-5345

DOI: 10.1515/crelle.2006.047