ENO-based high-order data-bounded and constrained positivity-preserving interpolation
نویسندگان
چکیده
A number of key scientific computing applications that are based upon tensor-product grid constructions, such as numerical weather prediction (NWP) and combustion simulations, require property-preserving interpolation. Essentially non-oscillatory (ENO) interpolation is a classic example schemes. In the aforementioned application areas, property preservation often manifests itself requirement for either data boundedness or positivity preservation. For example, in NWP, one may have to interpolate between on which dynamics calculated physics (and back). Interpolating density other physical quantities without accounting lead negative values nonphysical result inaccurate representations and/or interpretations data. Property-preserving straightforward when used context low-order simulation methods. High-order is, however, nontrivial, especially case where points not equispaced. this paper, we demonstrate it possible construct high-order methods ensure constrained novel feature algorithm positivity-preserving interpolant constrained; amount by exceeds be strictly controlled. The developed comes with theoretical estimates provide sufficient conditions We our collection 1D 2D examples, show all cases respected.
منابع مشابه
Data Bounded Polynomials and Preserving Positivity in High Order ENO and WENO Methods
The positivity and accuracy properties of the widely used ENO and WENO methods are considered by undertaking an analysis based upon data-bounded polynomial methods. The positivity preserving approach of Berzins based upon data-bounded polynomial interpolants is generalized to arbitrary meshes. This makes it possible to prove positivity conditions for ENO Methods by using a derivation based on s...
متن کاملImplicit Positivity-preserving High Order
Positivity-preserving discontinuous Galerkin (DG) methods for solving hyperbolic 5 conservation laws have been extensively studied in the last several years. But nearly all the devel6 oped schemes are coupled with explicit time discretizations. Explicit discretizations suffer from the 7 constraint for the Courant-Friedrichs-Levis (CFL) number. This makes explicit methods impractical 8 for probl...
متن کاملRange restricted positivity-preserving scattered data interpolation
The construction of a range restricted bivariate C ( or G ) interpolant to scattered data is considered in which the interpolant is positive everywhere if the original data are positive. This study is motivated by earlier work in which sufficient conditions are derived on Bézier points in order to ensure that surfaces comprising cubic Bézier triangular patches are always positive and satisfy C ...
متن کاملRange Restricted Positivity-Preserving G Scattered Data Interpolation
Abstract : The construction of a range restricted bivariate G interpolant to scattered data is considered in which the interpolant is positive everywhere if the original data are positive. This study is motivated by earlier work in which sufficient conditions are derived on Bézier points in order to ensure that surfaces comprising quartic Bézier triangular patches are always positive and satisf...
متن کاملPositivity-Preserving Piecewise Rational Cubic Interpolation
A piecewise rational cubic spline [5] has been used to visualize the positive data in its natural form. The spline representation is interpolatory and applicable to the scalar valued data. The shape parameters in the description of a rational cubic have been constrained in such a way that they preserve the shape of the positive data in the view of positive curve. As far as visual smoothness is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2022
ISSN: ['1017-1398', '1572-9265']
DOI: https://doi.org/10.1007/s11075-022-01352-5