Enlarged spectral problems and nonintegrability

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enlarged spectral problems and nonintegrability

The method of obtaining new integrable coupled equations through enlarging spectral problems of known integrable equations, which was recently proposed by W.-X. Ma, can produce nonintegrable systems as well. This phenomenon is demonstrated and explained by the example of the enlarged spectral problem of the Korteweg–de Vries equation.

متن کامل

Nonintegrability, chaos, and complexity

Two dimensional driven-dissipative flows are generally integrable via a conservation law that is singular at equilibria. Nonintegrable dynamical systems are confined to n≥3 dimensions. Even driven-dissipative deterministic dynamical systems that are critical, chaotic or complex have n-1 local time-independent conservation laws that can be used to simplify the geometric picture of the flow over ...

متن کامل

Inverse spectral problems for Sturm-Liouville operators with transmission conditions

Abstract: This paper deals with the boundary value problem involving the differential equation                      -y''+q(x)y=lambda y                                 subject to the standard boundary conditions along with the following discontinuity conditions at a point              y(a+0)=a1y(a-0),    y'(a+0)=a2y'(a-0)+a3y(a-0).  We develop the Hochestadt-Lieberman’s result for Sturm-Lio...

متن کامل

Holomorphic Nonintegrability of Magnetic Fields

We show that a magnetic field created by a simple planar configuration of three rectilinear wires may not be holomorphically integrable when considered as a vector field in C3. In particular the method of the proof gives an easy way of showing that the corresponding real vector field does not admit a real polynomial first integral. This is also an alternative way of contradicting the Stefanescu...

متن کامل

Dilations‎, ‎models‎, ‎scattering and spectral problems of 1D discrete Hamiltonian systems

In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 2005

ISSN: 0375-9601

DOI: 10.1016/j.physleta.2005.06.114