Enhancing Fault Classification Accuracy of Ball Bearing Using Central Tendency Based Time Domain Features

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration analysis of bearing for fault detection using time domain features and neural network

Ball bearings are among the most important and frequently encountered components in the vast majority of rotating machines, their carrying capacity and reliability being prominent for the overall machine performance. Fault detection and diagnosis in the early stages of damage is necessary to prevent their malfunctioning and failure during operation. This paper presents fault detection of ball b...

متن کامل

A new technique for bearing fault detection in the time-frequency domain

This paper presents a new Fast Kurtogram Method in the time-frequency domain using novel types of statistical features instead of the kurtosis. For this study, the problem of four classes for Bearing Fault Detection is investigated using various statistical features. This research is conducted in four stages. At first, the stability of each feature for each fault mode is investigated. Then, res...

متن کامل

Ann Based Fault Diagnosis of Rolling Element Bearing Using Time-frequency Domain Feature

This paper presents a methodology for an automation of fault diagnosis of ball bearings having localized defects (spalls) on the various bearing components. The system uses the wavelet packet decomposition using ‘rbio5.5’ real mother wavelet function for feature extraction from the vibration signal, recorded for various bearing fault conditions. The decomposition level is determined by the samp...

متن کامل

Classification of ball bearing faults using a hybrid intelligent model

© 2016. Hosting by Elsevier B.V. All rights reserved. Keyword: Condition monitoring Ball bearing Electrical motor Fuzzy min-max neural network Random forest

متن کامل

Application of Time-domain Features with Neural Network for Bearing Fault Detection

The normal functioning of induction motors depend largely on ball bearing. Proper functioning and operation of ball bearing is the result of its maintenance by condition monitoring. Out of the various measures of condition monitoring vibration monitoring is the most extensively used and economical technique to detect, identify and distinguish fault in induction motors. In this research paper in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2017

ISSN: 2169-3536

DOI: 10.1109/access.2016.2608505