Enhancement mechanisms of ethanol-sensing properties based on Cr2O3 nanoparticle-anchored SnO2 nanowires
نویسندگان
چکیده
منابع مشابه
Polyethylene glycol-directed SnO2 nanowires for enhanced gas-sensing properties.
SnO(2) nanowires with lengths in the tens of micrometres range have been synthesized on a large scale via a facile polyethylene glycol-directed method at ambient temperature followed by a suitable thermal treatment of the precursor nanowires. The morphology of the precursor of the SnO(2) nanowires is tunable by changing the concentration of either SnCl(2) or polyethylene glycol. After calcinati...
متن کاملSynthesis of SnO2 Nanowires their Structural and H2 Gas Sensing Properties
SnO2 nanowires were prepared on bare oxidized silicon, Au and SnO2 coated substrates by thermal evaporation of tin grains in argon atmosphere at 900°C. X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM) were used to characterize the SnO2 nanowires. FE-SEM images indicated that the size of SnO2 nanowires depend on the type of substrate. Gas sensor was fabricated by ...
متن کاملGas Sensing Properties of Ordered Mesoporous SnO2
We report on the synthesis and CO gas-sensing properties of mesoporous tin(IV) oxides (SnO2). For the synthesis cetyltrimethylammonium bromide (CTABr) was used as a structure-directing agent; the resulting SnO2 powders were applied as films to commercially available sensor substrates by drop coating. Nitrogen physisorption shows specific surface areas up to 160 m·g and mean pore diameters of ab...
متن کاملImproving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique
Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors...
متن کاملEnhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures
An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Materials Research and Technology
سال: 2020
ISSN: 2238-7854
DOI: 10.1016/j.jmrt.2019.10.055