Enhanced electro-optic phase shifts in suspended waveguides
نویسندگان
چکیده
منابع مشابه
Enhanced electro-optic phase shifts in suspended waveguides.
We demonstrate enhanced electro-optic phase shifts in suspended InGaAs/InGaAsP quantum well waveguides compared to attached waveguides. The enhancement stems from an improved overlap between the optical mode and the multiple quantum well layers in thin waveguides when the semiconductor material beneath the waveguide is selectively etched. The measured voltage length product is 0.41 V-cm and the...
متن کاملLight-enhanced electro-optic spectral tuning in annealed proton-exchanged periodically poled lithium niobate channel waveguides.
We report the observation of light-enhanced electro-optic spectral tuning in annealed proton-exchanged, asymmetric domain-duty-cycle periodically poled lithium niobate (PPLN) channel waveguides for second-harmonic generation. The spectral tuning rate was increased rapidly from 0.07 nm/(kV/mm) to a saturated value of 0.32 nm/(kV/mm) in a 30%/70% domain-duty-cycle PPLN waveguide when the fundamen...
متن کاملPyro-electro-optic phase gratings.
A new physical mechanism is proposed for generating transient phase gratings in transparent pyroelectric materials. The mechanism combines the pyroelectric and electro-optic effects to convert spatial intensity variations into transient phase gratings. The grating diffraction efficiency increases with a figure of merit that is proportional to the pyroelectric, electro-optic, and absorption coef...
متن کاملElectro-Optic Coefficient Enhancement in Poled LiNbO3 Waveguides
Lithium niobate crystals (LN) show a significant electro-optic (EO) response which contributes to the fabrication of low-voltage operation, high speed integrated optical modulators routinely used in optical telecommunication and integrated optics [1]. A UV laser direct writing method for the fabrication of optical channel waveguides has been proposed and characterized recently [2–4]. Here we re...
متن کاملElectro-optic and electro-absorption characterization of InAs quantum dot waveguides.
Optical properties of multilayer InAs quantum dot waveguides, grown by molecular beam epitaxy, have been studied under applied electric field. Fabry-Perot measurements at 1515 nm on InAs/GaAs quantum dot structures yield a significantly enhanced linear electro-optic efficiency compared to bulk GaAs. Electro-absorption measurements at 1300 nm showed increased absorption with applied field accomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optics Express
سال: 2010
ISSN: 1094-4087
DOI: 10.1364/oe.18.000885