Enhanced Cycling Performance of Rechargeable Zinc–Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive
نویسندگان
چکیده
منابع مشابه
Rechargeable Batteries
Purpose: The goal of our battery research is to produce an all solid-state, high performance rechargeable cell. Moving to a liquid-free polymer electrolyte eliminates the need for heavy casing material, thus the energy density is increased significantly. In addition, the absence of solvent additives leads to better thermal and chemical stability, broadening the range of applications for which t...
متن کاملHigh power rechargeable batteries
Energy and power density are the key figures of merit for most electrochemical energy storage systems. Considerable efforts worldwide have been made to improve the energy density of rechargeable (secondary) batteries, as this is critical for most applications. As the penetration of batteries into ever more demanding applications has increased, power density, the allowed rate of energy transfer ...
متن کاملLiV3O8/Polytriphenylamine Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Lithium Batteries
LiV₃O₈/polytriphenylamine composites are synthesized by a chemical oxidative polymerization process and applied as cathode materials for rechargeable lithium batteries (RLB). The structure, morphology, and electrochemical performances of the composites are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, galvanostatic discharge/charge tests, an...
متن کاملElectrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries.
An aluminum metal, both native and with a very thin oxide film, was investigated as an anode for aluminum-ion batteries. Investigations were carried out in an acidic ionic liquid electrolyte, composed of AlCl3 in 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl), with β-MnO2/C as a cathode. The battery based on Al metal with a very thin oxide film showed high capacity and stable surface corrosion.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Molecular Sciences
سال: 2020
ISSN: 1422-0067
DOI: 10.3390/ijms21197303