Engineering aspects of immobilized biocatalysts.
نویسندگان
چکیده
منابع مشابه
Biocatalysts Immobilized in Ultrathin Ordered Films
The immobilization of enzymes and other proteins into ordered thin materials has attracted considerable attention over the past few years. This research has demonstrated that biomolecules immobilized in different [Langmuir-Blodgett (LB)/Langmuir-Schaefer (LS)] matrixes retain their functional characteristics to a large extent. These new materials are of interest for applications as biosensors a...
متن کاملEngineering aldolases as biocatalysts☆
Aldolases are seen as an attractive route to the production of biologically important compounds due to their ability to form carbon-carbon bonds. However, for many industrial reactions there are no naturally occurring enzymes, and so many different engineering approaches have been used to address this problem. Engineering methods have been used to alter the stability, substrate specificity and ...
متن کاملLOVely enzymes – towards engineering light‐controllable biocatalysts
Light control over enzyme function represents a novel and exciting field of biocatalysis research. Blue-light photoreceptors of the Light, Oxygen, Voltage (LOV) family have recently been investigated for their applicability as photoactive switches. We discuss here the primary photochemical events leading to light activation of LOV domains as well as the proposed signal propagation mechanism to ...
متن کاملMetabolic engineering of biocatalysts for carboxylic acids production
Fermentation of renewable feedstocks by microbes to produce sustainable fuels and chemicals has the potential to replace petrochemical-based production. For example, carboxylic acids produced by microbial fermentation can be used to generate primary building blocks of industrial chemicals by either enzymatic or chemical catalysis. In order to achieve the titer, yield and productivity values req...
متن کاملProtein engineering for development of new hydrolytic biocatalysts.
Hydrolytic enzymes play important roles as biocatalysts in chemical synthesis. The chemical versatility and structurally sturdy features of Candida antarctica lipase B has placed this enzyme as a common utensil in the synthetic tool-box. In addition to catalyzing acyl transfer reactions, a number of promiscuous activities have been described recently. Some of these new enzyme activities have be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOURNAL OF CHEMICAL ENGINEERING OF JAPAN
سال: 1988
ISSN: 0021-9592,1881-1299
DOI: 10.1252/jcej.21.219