Engine Sonic Load Prediction of Blended Wing Body Aircraft
نویسندگان
چکیده
Abstract The sonic load of the engine is input for cabin noise design and acoustic fatigue verification in civil aircraft. Based on static database, an engineering prediction method blended wing body aircraft flight developed. In process prediction, sound source position correction, geometric diffusion, effect airframe scattering component are considered. air-frame level simulated analyzed. overall pressure distribution spectrum at typical positions given. results show that fan inlet most important BWB surface, maximum value upper surface 134 dB, which higher than conventional crane
منابع مشابه
Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft
This paper presents a study on the coupled aeroelastic/flight dynamic stability and gust response of a blendedwing-body aircraft that derives from the U.S. Air Force’s High Lift-Over-Drag Active (HiLDA) wing experimental model. An effective method is used to model very flexible blended-wing-body vehicles based on a low-order aeroelastic formulation that is capable of capturing the important str...
متن کاملAerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft
Abstract The blended-wing body is an aircraft configuration that has the potential to be more efficient than conventional large transport aircraft configurations with the same capability. However, the design of the blended-wing is challenging due to the tight coupling between aerodynamic performance, trim, and stability. Other design challenges include the nature and number of the design variab...
متن کاملDesign and analysis of the control and stability of a Blended Wing Body aircraft
Future aircraft generations are required to provide higher performance and capacity with minimum cost and environmental impact. This fact calls for the design of revolutionary unconventional configurations, such as the Blended Wing Body (BWB), a tailless aircraft which integrates wing and fuselage into a single lifting surface with efficient and promising results. In this paper, a BWB aircraft ...
متن کاملRANS-based Aerodynamic Shape Optimization of a Blended-Wing-Body Aircraft
A series of RANS-based aerodynamic shape optimization for an 800-passenger blended-wing-body aircraft is performed. A gradient-based optimization algorithm and a parallel structured multiblock RANS solver with Spalart–Allmaras turbulence model are used. The derivatives are computed using a discrete adjoint method considering both frozen-turbulence and full-turbulence assumptions. A total of 274...
متن کاملSystem Noise Assessment of Blended-Wing-Body Aircraft with Open Rotor Propulsion
An aircraft system noise study is presented for the Blended-Wing-Body (BWB) aircraft concept with three open rotor engines mounted on the upper surface of the airframe. It is shown that for such an aircraft, the cumulative Effective Perceived Noise Level (EPNL) is about 24 dB below the current aircraft noise regulations of Stage 4. While this makes the design acoustically viable in meeting the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2023
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2569/1/012071