Energy methods for Hartree type equations with inverse-square potentials
نویسندگان
چکیده
منابع مشابه
On Schrödinger Operators with Multipolar Inverse-square Potentials
Positivity, essential self-adjointness, and spectral properties of a class of Schrödinger operators with multipolar inverse-square potentials are discussed. In particular a necessary and sufficient condition on the masses of singularities for the existence of at least a configuration of poles ensuring the positivity of the associated quadratic form is established.
متن کاملOn Schrödinger Operators with Multisingular Inverse-square Anisotropic Potentials
We study positivity, localization of binding and essential self-adjointness properties of a class of Schrödinger operators with many anisotropic inverse square singularities, including the case of multiple dipole potentials.
متن کاملCriticality in one dimension with inverse square-law potentials.
We demonstrate that the scaled order parameter for ferromagnetic Ising and three-state Potts chains with inverse square interactions exhibits a universal critical jump, in analogy with the superfluid density in helium films. Renormalization-group arguments are combined with numerical simulations of systems containing up to 10(6) lattice sites to accurately determine the critical properties of t...
متن کاملSystems of Elliptic Equations Involving Multiple Inverse–square Potentials and Critical Exponents
In this paper, a system of elliptic equations is investigated, which involves multiple critical Sobolev exponents and singular points. The best Sobelev constant related to the system is studied, which is verified to be independent of the location of singular points. By a variant of the concentration compactness principle and the mountain-pass argument, the existence of positive solutions to the...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Evolution Equations and Control Theory
سال: 2013
ISSN: 2163-2480
DOI: 10.3934/eect.2013.2.531