Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary
نویسندگان
چکیده
منابع مشابه
Energy identity for a class of approximate biharmonic maps into sphere in dimension four
We consider in dimension four weakly convergent sequences of approximate biharmonic maps into sphere with bi-tension fields bounded in L for some p > 1. We prove an energy identity that accounts for the loss of Hessian energies by the sum of Hessian energies over finitely many nontrivial biharmonic maps on R.
متن کاملRegularity Theorems and Energy Identities for Dirac-harmonic Maps
We study Dirac-harmonic maps from a Riemann surface to a sphere Sn. We show that a weakly Dirac-harmonic map is in fact smooth, and prove that the energy identity holds during the blow-up process.
متن کاملDirac-harmonic maps from index theory
We prove existence results for Dirac-harmonic maps using index theoretical tools. They are mainly interesting if the source manifold has dimension 1 or 2 modulo 8. Our solutions are uncoupled in the sense that the underlying map between the source and target manifolds
متن کاملRegularity of Dirac-harmonic maps
For any n-dimensional compact spin Riemannian manifold M with a given spin structure and a spinor bundle ΣM , and any compact Riemannian manifold N , we show an ǫ-regularity theorem for weakly Dirac-harmonic maps (φ, ψ) : M ⊗ΣM → N ⊗ φ∗TN . As a consequence, any weakly Dirac-harmonic map is proven to be smooth when n = 2. A weak convergence theorem for approximate Dirac-harmonic maps is establi...
متن کاملLiouville Theorems for Dirac - Harmonic Maps
We prove Liouville theorems for Dirac-harmonic maps from the Euclidean space Rn, the hyperbolic space Hn and a Riemannian manifold Sn (n ≥ 3) with the Schwarzschild metric to any Riemannian manifold N .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2019
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2018.05.006