Energy-efficient In-Memory Address Calculation
نویسندگان
چکیده
Computation-in-Memory (CIM) is an emerging computing paradigm to address memory bottleneck challenges in computer architecture. A CIM unit cannot fully replace a general-purpose processor. Still, it significantly reduces the amount of data transfer between traditional and processor by enriching transferred information. Data transactions consist access addresses values. While main focus field in-memory apply computations on content (values), importance CPU-CIM calculations for generating sequence data-dominated applications generally overlooked. However, information used “address” can easily be even more than half total bits many applications. In this article, we propose circuit perform Address Calculation Accelerator. Our simulation results showed that calculating sequences inside (instead CPU) reduce therefore contribute considerable energy saving, latency, bus traffic. For chosen application guided image filtering, calculation almost two orders magnitude reduction over bus.
منابع مشابه
Saturation Mutagenesis by Efficient Free-Energy Calculation
Single-point mutations in proteins can greatly influence protein stability, binding affinity, protein function or its expression per se. Here, we present accurate and efficient predictions of the free energy of mutation of amino acids. We divided the complete mutational free energy into an uncharging step, which we approximate by a third-power fitting (TPF) approach, and an annihilation step, w...
متن کاملEnergy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach
This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...
متن کاملMemory efficient and scalable address mapping for flash storage devices
Flash memory devices commonly rely upon traditional address mapping schemes such as page mapping, block mapping or a hybrid of the two. Page mapping is more flexible than block or hybrid mapping without being restricted by block boundaries. However, its mapping table tends to grow large quickly as the capacity of flash memory devices does. To overcome this limitation, we propose novel mapping s...
متن کاملEnergy-Efficient Network Memory for Ubiquitous Devices
This paper explores the energy and delay issues that occur when some or all of the local storage is moved out of the embedded device, and into a remote network server. We demonstrate using the network to access remote storage in lieu of local DRAM results in significant power savings. Mobile applications continually demand additional memory, with traditional designs increasing DRAM to address t...
متن کاملEnergy-Efficient Streaming Using Non-volatile Memory
The disk and the DRAM in a typical mobile system consume a significant fraction (up to 30%) of the total system energy. To save on storage energy, the DRAM should be small and the disk should be spun down for long periods of time. We show that this can be achieved for predominantly streaming workloads by connecting the disk to the DRAM via a large non-volatile memory (NVM). We refer to this as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Architecture and Code Optimization
سال: 2022
ISSN: ['1544-3973', '1544-3566']
DOI: https://doi.org/10.1145/3546071