Endomorphism monoids of chained graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endomorphism monoids of chained graphs

For any complete chain I whose distinct elements are separated by cover pairs, and for every family {Mi | i∈ I} of monoids, we construct a family of graphs {Gi | i∈ I} such that Gi is a proper induced subgraph of Gj for all i; j∈ I with i ¡ j, Gi = ⋂ {Gj | j∈ I; i ¡ j} whenever i = inf{ j∈ I | j¿ i} in I , Gi = ⋃ {Gj | j∈ I; j ¡ i} whenever i = sup{ j∈ I | j¡ i} in I , the endomorphism monoid o...

متن کامل

Endomorphism Spectrums and Endomorphism Types of Graphs

In this paper, the endomorphisms, the half-strong endomorphisms, the locally strong endomorphisms, the quasi-strong endomorphisms, the strong endomorphisms and the automorphisms of a join of cycle n C and a vertex y are investigated. Some enumerative problems concerning these graphs are solved. In particular, the endomorphism spectrums and the endomorphism types of these graphs are given. It ha...

متن کامل

On Endomorphism Monoids of Partial Orders and Central Relations

In this paper we characterize pairs of Rosenberg relations (ρ, σ) with the property that the endomorphism monoid of one of the relations is properly contained in the endomorphism monoid of the other relation. We focus on the situations where one of the relations is a partial order, or a central relation. AMS Mathematics Subject Classification (2000): 08A35, 06A06

متن کامل

Endomorphism Breaking in Graphs

We introduce the endomorphism distinguishing number De(G) of a graph G as the least cardinal d such that G has a vertex coloring with d colors that is only preserved by the trivial endomorphism. This generalizes the notion of the distinguishing number D(G) of a graph G, which is defined for automorphisms instead of endomorphisms. As the number of endomorphisms can vastly exceed the number of au...

متن کامل

On endomorphism-regularity of zero-divisor graphs

The paper studies the following question: Given a ring R, when does the zero-divisor graph (R) have a regular endomorphism monoid? We prove if R contains at least one nontrivial idempotent, then (R) has a regular endomorphism monoid if and only if R is isomorphic to one of the following rings: Z2 × Z2 × Z2; Z2 × Z4; Z2 × (Z2[x]/(x)); F1 × F2, where F1, F2 are fields. In addition, we determine a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2002

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(00)00405-2