Endomorphism algebras of admissible $p$-adic representations of $p$-adic Lie groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADMISSIBLE NILPOTENT COADJOINT ORBITS OF p-ADIC REDUCTIVE LIE GROUPS

The orbit method conjectures a close relationship between the set of irreducible unitary representations of a Lie group G, and admissible coadjoint orbits in the dual of the Lie algebra. We define admissibility for nilpotent coadjoint orbits of p-adic reductive Lie groups, and compute the set of admissible orbits for a range of examples. We find that for unitary, symplectic, orthogonal, general...

متن کامل

Algebras of p - adic distributions and admissible representations

Introduction In a series of earlier papers, ([ST1-4]) we began a systematic study of locally analytic representations of a locally L-analytic group G, where L ⊆ C p is a finite extension of Q p. Such a representation is given by a continuous action of G on a locally convex topological vector space V over a spherically complete extension field K ⊆ C p of L, such that the orbit maps g → gv are lo...

متن کامل

Introduction to admissible representations of p-adic groups

The motivation for the construction is classical. The group GL2(R) acts on the space of all symmetric 2 × 2 real matrices: X : S 7−→ XS X , and preserves the open cone C of positive definite matrices. The quotient PGL2(R) therefore acts on the space P(C), which is the quotient of such matrices modulo positive scalars. The isotropy subgroup of I is the imageO(2) = O(2)/{±I} inPGL2(R), so that P(...

متن کامل

EXTENSIONS OF REPRESENTATIONS OF p-ADIC GROUPS

We calculate extensions between certain irreducible admissible representations of p-adic groups. To Hiroshi Saito, in memoriam

متن کامل

SMOOTH REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS

Smooth representations of p-adic groups arise in number theory mainly through the study of automorphic representations, and thus in the end, for example, from modular forms. We saw in the first lecture by Matt Emerton that a modular form, thought of as function on the set of lattices with level N structure, we obtain a function in C(GL2(Z)\GL2(R) × GL2(Z/N),C) satisfying certain differential eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Representation Theory of the American Mathematical Society

سال: 2013

ISSN: 1088-4165

DOI: 10.1090/s1088-4165-2013-00432-6