Empirical information criteria for time series forecasting model selection
نویسندگان
چکیده
منابع مشابه
Empirical information criteria for time series forecasting model selection
In this paper, we propose a new Empirical Information Criterion (EIC) for model selection which penalizes the likelihood of the data by a function of the number of parameters in the model. It is designed to be used where there are a large number of time series to be forecast. However, a bootstrap version of the EIC can be used where there is a single time series to be forecast. The EIC provides...
متن کاملDEPARTMENT OF ECONOMETRICS AND BUSINESS STATISTICS Empirical Information Criteria for Time Series Forecasting Model Selection
In this paper, we propose a new Empirical Information Criterion (EIC) for model selection which penalizes the likelihood of the data by a function of the number of parameters in the model. It is designed to be used where there are a large number of time series to be forecast. However, a bootstrap version of the EIC can be used where there is a single time series to be forecast. The EIC provides...
متن کاملMetric-based model selection for time-series forecasting
Metric-based methods, which use unlabeled data to detect gross differences in behavior away from the training points, have recently been introduced for model selection, often yielding very significant improvements over alternatives (including cross-validation). We introduce extensions that take advantage of the particular case of time-series data in which the task involves prediction with a hor...
متن کاملA Study on Training Criteria for Financial Time Series Forecasting
Traditional backpropagation neural networks training criterion is based on goodness-of-fit which is also the most popular criterion forecasting. How ever, in the context of financial time series forecasting, we are not only concerned at how good the forecasts fit their target. In order to increase the forecastability in terms of profit earning, we propose a profit based adjusted weight factor f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Computation and Simulation
سال: 2005
ISSN: 0094-9655,1563-5163
DOI: 10.1080/00949650410001687208