Embeddings and characterizations of Lipschitz spaces
نویسندگان
چکیده
منابع مشابه
Lipschitz Type Characterizations for Bergman Spaces
We obtain new characterizations for Bergman spaces with standard weights in terms of Lipschitz type conditions in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As a consequence, we prove optimal embedding theorems when an analytic function on the unit disk is symmetrically lifted to the bidisk.
متن کاملLipschitz and Path Isometric Embeddings of Metric Spaces
We prove that each sub-Riemannian manifold can be embedded in some Euclidean space preserving the length of all the curves in the manifold. The result is an extension of Nash C Embedding Theorem. For more general metric spaces the same result is false, e.g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of finite Hausdorff dimension can be embedded in some Eu...
متن کاملAmenability, Locally Finite Spaces, and Bi-lipschitz Embeddings
We define the isoperimetric constant for any locally finite metric space and we study the property of having isoperimetric constant equal to zero. This property, called Small Neighborhood property, clearly extends amenability to any locally finite space. Therefore, we start making a comparison between this property and other notions of amenability for locally finite metric spaces that have been...
متن کاملBest constants for Lipschitz embeddings of metric spaces into c
We answer a question of Aharoni by showing that every separable metric space can be Lipschitz 2-embedded into c0 and this result is sharp; this improves earlier estimates of Aharoni, Assouad and Pelant. We use our methods to examine the best constant for Lipschitz embeddings of the classical `p-spaces into c0 and give other applications. We prove that if a Banach space embeds almost isometrical...
متن کاملNote on bi-Lipschitz embeddings into normed spaces
Let (X, d), (Y, ρ) be metric spaces and f : X → Y an injective mapping. We put ‖f‖Lip = sup{ρ(f(x), f(y))/d(x, y); x, y ∈ X, x 6= y}, and dist(f) = ‖f‖Lip.‖f ‖Lip (the distortion of the mapping f). We investigate the minimum dimension N such that every n-point metric space can be embedded into the space lN ∞ with a prescribed distortion D. We obtain that this is possible for N ≥ C(logn)2n3/D, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal de Mathématiques Pures et Appliquées
سال: 2020
ISSN: 0021-7824
DOI: 10.1016/j.matpur.2020.11.004