Embedding Compact Strongly Pseudoconvex CR Manifolds of Class C<sup>3, α </sup>
نویسندگان
چکیده
منابع مشابه
Embedding Compact Strongly Pseudoconvex Cr Manifolds of Class C
In this paper we derive maximal pointwise Hölder estimates for the Kohn’s Laplacian on strongly pseudoconvex CR manifolds of class C3 using the Tanaka-Webster Pseudohermitian metric. The estimates can be used to improve the Boutet De Monvel’s embedding theorem for strongly pseudoconvex compact CR manifolds of real dimension greater or equal to five with less smoothness assumption.
متن کاملEmbeddability of Some Strongly Pseudoconvex Cr Manifolds
We obtain an embedding theorem for compact strongly pseudoconvex CR manifolds which are bounadries of some complete Hermitian manifolds. We use this to compactify some negatively curved Kähler manifolds with compact strongly pseudoconvex boundary. An embedding theorem for Sasakian manifolds is also derived.
متن کاملEmbedding of Pseudoconvex Cr Manifolds of Levi-forms with One Degenerate Eigenvalue
Suppose that M is an abstract smoothly bounded orientable CR manifold of dimension 2n − 1 with a given integrable CR structure S of dimension n− 1. Since M is orientable, there are a smooth real nonvanishing 1-form η and a smooth real vector field X0 on M so that η(X) = 0 for all X ∈ S and η(X0) = 1. We define the Levi form of S on M by iη([X ′, X ′′]), X ′, X ′′ ∈ S. We may assume that M ⊂ M̃ ,...
متن کاملHartogs Type Theorems for CR L functions on Coverings of Strongly Pseudoconvex Manifolds
We prove an analog of the classical Hartogs extension theorem for CR L2 functions defined on boundaries of certain (possibly unbounded) domains on coverings of strongly pseudoconvex manifolds. Our result is related to a question formulated in the paper of Gromov, Henkin and Shubin [GHS] on holomorphic L2 functions on coverings of pseudoconvex manifolds.
متن کاملHolomorphic Approximation on Compact Pseudoconvex Complex Manifolds
Let M be a smoothly bounded compact pseudoconvex complex manifold of finite type in the sense of D’Angelo such that the complex structure of M extends smoothly up to bM . Let m be an arbitrary nonnegative integer. Let f be a function in H(M) ∩Hm(M), where Hm(M) is the Sobolev space of order m. Then f can be approximated by holomorphic functions on M in the Sobolev space Hm(M). Also, we get a ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure and Applied Mathematics Quarterly
سال: 2010
ISSN: 1558-8599,1558-8602
DOI: 10.4310/pamq.2010.v6.n4.a8