Embedded Runge Kutta method for Power System Transient Stability Analysis
نویسندگان
چکیده
منابع مشابه
Runge-Kutta-Chebyshev projection method
In this paper a fully explicit, stabilized projection method called the Runge-Kutta-Chebyshev (RKC) Projection method is presented for the solution of incompressible Navier-Stokes systems. This method preserves the extended stability property of the RKC method for solving ODEs, and it requires only one projection per step. An additional projection on the time derivative of the velocity is perfo...
متن کاملParallel Execution of Embedded Runge-Kutta Methods
In this paper, we consider the parallel solution of nonstii ordinary diierential equations with two diierent classes of Runge-Kutta (RK) methods providing embedded solutions: classical embedded RK methods and iterated RK methods which were constructed especially for parallel execution. For embedded Runge-Kutta methods, mainly the potential system parallelism is exploited. Iterated RK methods pr...
متن کاملSpatially Partitioned Embedded Runge-Kutta Methods
We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods ...
متن کاملRunge-kutta Stability on a Floquet Problem
This work examines the stability of explicit Runge-Kutta methods applied to a certain linear ordinary differential equation with periodic coefficients. On this problem naive use of the eigenvalues of the Jacobian results in misleading conclusions about stable behaviour. It is shown, however, that a valid analogue of the classical absolute stability theory can be developed. Further, using a suit...
متن کاملStability of Runge–Kutta–Nyström methods
In this paper, a general and detailed study of linear stability of Runge–Kutta–Nyström (RKN) methods is given. In the case that arbitrarily stiff problems are integrated, we establish a condition that RKN methods must satisfy so that a uniform bound for stability can be achieved. This condition is not satisfied by any method in the literature. Therefore, a stable method is constructed and some ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEJ Transactions on Power and Energy
سال: 2000
ISSN: 0385-4213,1348-8147
DOI: 10.1541/ieejpes1990.120.2_195