Embedded eigenvalues for perturbed periodic Jacobi operators using a geometric approach

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Absence of Embedded Eigenvalues for Schrõdinger Operators with Perturbed Periodic Potentials

The problem of absence of eigenvalues imbedded into the continuous spectrum is considered for a Schrödinger operator with a periodic potential perturbed by a sufficiently fast decaying “impurity” potential. Results of this type have previously been known for the one-dimensional case only. Absence of embedded eigenvalues is shown in dimensions two and three if the corresponding Fermi surface is ...

متن کامل

On the structure of eigenfunctions corresponding to embedded eigenvalues of locally perturbed periodic graph operators

The article is devoted to the following question. Consider a periodic self-adjoint difference (differential) operator on a graph (quantum graph) G with a co-compact free action of the integer lattice Z. It is known that a local perturbation of the operator might embed an eigenvalue into the continuous spectrum (a feature uncommon for periodic elliptic operators of second order). In all known co...

متن کامل

On Approximation of the Eigenvalues of Perturbed Periodic Schrödinger Operators

This paper addresses the problem of computing the eigenvalues lying in the gaps of the essential spectrum of a periodic Schrödinger operator perturbed by a fast decreasing potential. We use a recently developed technique, the so called quadratic projection method, in order to achieve convergence free from spectral pollution. We describe the theoretical foundations of the method in detail, and i...

متن کامل

Inequalities for the eigenvalues of non-selfadjoint Jacobi operators

We prove Lieb-Thirring-type bounds on eigenvalues of non-selfadjoint Jacobi operators, which are nearly as strong as those proven previously for the case of selfadjoint operators by Hundertmark and Simon. We use a method based on determinants of operators and on complex function theory, extending and sharpening earlier work of Borichev, Golinskii and Kupin.

متن کامل

On Eigenvalues in Gaps for Perturbed Magnetic Schrr Odinger Operators

1 Introduction (1) We consider Schrr odinger operators with a spectral gap, perturbed by either a decreasing electric potential or a decreasing magnetic eld. The strength of these perturbations depends on a coupling parameter. With growing, eigenvalues may move into the gap or out of the gap. Most of our results concern (lower) bounds for the number of eigenvalues that cross a xed energy level ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Difference Equations and Applications

سال: 2018

ISSN: 1023-6198,1563-5120

DOI: 10.1080/10236198.2018.1468890