Electron Density Measurement Inside a Hall Thruster Using Microwave Interferometry

نویسندگان

چکیده

No AccessTechnical NotesElectron Density Measurement Inside a Hall Thruster Using Microwave InterferometryNaoya Kuwabara, Masatoshi Chono, Naoji Yamamoto and Daisuke KuwaharaNaoya KuwabaraKyushu University, Kasuga 816-8580, Japan*Graduate Student, Department of Advanced Energy Engineering Science, 6-1 Kasuga-kouen, Fukuoka; .Search for more papers by this author, ChonoKyushu Japan†Graduate student, YamamotoKyushu Japan‡Professor, . Member AIAA.Search author KuwaharaChubu Kasugai 487-8501, Japan§Senior Assistant Professor, College Engineering, 1200 Matsumoto-cho, Aichi; authorPublished Online:4 Mar 2021https://doi.org/10.2514/1.B38163SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Lafleur T., Baalrud S. D. Chabert P., “Theory the Anomalous Transport in Effect Thrusters. I. Insights from Particle-in-Cell Simulations,” Physics Plasmas, Vol. 23, No. 5, 2016, Paper 053502. https://doi.org/10.1063/1.4948495 Google Scholar[2] II. Kinetic Model,” 053503. https://doi.org/10.1063/1.4948496 Scholar[3] Meezan N. B., Hargus W. A. Cappelli M. A., “Anomalous Electron Mobility Coaxial Discharge Plasma,” Physical Review E, 63, 2, 2001, 026410. https://doi.org/10.1103/PhysRevE.63.026410 CrossrefGoogle Scholar[4] Morozov I., Esipchuk Y. V., Kapulkin M., Nevrovskii V. Smirnov “Azimuthally Asymmetric Modes Conductivity Closed Drift Accelerators,” Soviet Technical Physics, 18, Nov. 1973, pp. 615–620. Scholar[5] Hirakawa Arakawa Y., “Particle Simulation Plasma Electric Propulsion Thrusters,” The Japan Society Aeronautical Space Sciences 45, 523, 1997, 444–452 (in Japanese). https://doi.org/10.2322/jjsass1969.45.444 Scholar[6] Janhunen S., Smolyakov Chapurin O., Sydorenko D., Kaganovich Raitses “Nonlinear Structures Partially Magnetized Plasmas,” Physic Plasma, 25, 1, 2018, 011608. https://doi.org/10.1063/1.5001206 Scholar[7] Makowski K., Peradzynski Z., Kolanowski Barral Kurzyna J. Dudeck “Near Wall Cylindrical Geometry Effect,” International Conference, Rocket Soc. IEPC-2007-246, 2007. Scholar[8] Choueiri E. “Plasma Oscillations 8, 4, 1411–1426. https://doi.org/10.1063/1.1354644 Scholar[9] Cho Hara Watanabe H., Kubota K. Yamashita “Investigation Cross-Field 100-W Class Full Simulation,” IEPC-2019-718, 2019. Scholar[10] Lobbia R. B. Beal E., “Recommended Practice Use Langmuir Probes Testing,” Journal Power, 33, 3, 2017, 566–581. https://doi.org/10.2514/1.B35531 LinkGoogle Scholar[11] Mazouffre Gawron Sadeghi N., “A Time-resolved Laser Induced Fluorescence Study on Ion Velocity Distribution Function After Fast Current Disruption,” 16, 2009, 043504. https://doi.org/10.1063/1.3112704 Scholar[12] Chaplin Lopez Ortega Mikellides G., Hofer R., Polk Friss J., “Time-Resolved Measurements High-Power Laser-Induced with Transfer Averaging,” Applied Letters, 116, 2020, 234107. https://doi.org/10.1063/5.0007161 Scholar[13] Kentaro Naoto Kiichiro U. Hideki “Thomson-Scattering Diagnostics Plasmas Produced Miniature Engine,” 26, 2012, 381–384. https://doi.org/10.2514/1.39145 Scholar[14] Tsikata Honoré C. Grésillonb “Collective Thomson Scattering Studying Instabilities Instrumentation 10, 2013, C10012. https://doi.org/10.1088/1748-0221/8/10/C10012 Scholar[15] Kuwahara Ito Nagayama Tsuchiya Yoshikawa Kohagura Yoshinaga Yamaguchi Kogi Mase Shinohara “Development Local Oscillator Integrated Antenna Array Imaging Diagnostics,” Instruments, Dec. 2015, C12031. https://doi.org/10.1088/1748-0221/10/12/C12031 Scholar[16] Kawahata “Fundamentals Electromagnetic Waves,” Fusion Research, 87, 2011, 315–325 Scholar[17] Wang X., Shima Nojiri Sakamoto Nakashima 60-GHz Interferometery Divertor Experiments GAMMA 10/PDX,” Scientific 11, 11E127. https://doi.org/10.1063/1.4961292 Scholar[18] Tsukishima T. 52, 1984, 129–162 https://doi.org/10.1585/jspf1958.52.129 Scholar[19] Boeuf “Tutorial: Modeling 121, 011101. https://doi.org/10.1063/1.4972269 Scholar[20] Fife Martinez-Sanchez Szabo Numerical Low-Frequency AIAA 1997-3052, 1997. Scholar[21] P. Garrigues L., “Low Frequency Oscillation Stationary Thruster,” 84, 7, 1998, 3541–3554. https://doi.org/10.1063/1.368529 Scholar[22] Komurasaki “Discharge 21, 2005, 870–876. https://doi.org/10.2514/1.12759 Scholar Previous article FiguresReferencesRelatedDetailsCited byReflectometry diagnostics atmospheric entry applications: state-of-the-art new developments4 February 2023 | CEAS Journal, 56 What's Popular Volume 37, Number 3May 2021 CrossmarkInformationCopyright © American Institute Aeronautics Astronautics, Inc. All rights reserved. requests copying permission reprint should be submitted CCC at www.copyright.com; employ eISSN 1533-3876 initiate your request. See also Rights Permissions www.aiaa.org/randp. AcknowledgmentsThe experiments were performed Laboratory Astronautical Aerospace Exploration Agency. This work was supported Promotion Science (JSPS) KAKENHI Grants JP18H03815, JP18KK0406, JP19K14683.PDF Received2 July 2020Accepted7 2021Published online4 March

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron density measurement by differential interferometry

A novel differential interferometer is being developed to measure the electron density gradient and its fluctuations. Two separate laser beams with slight spatial offset and frequency difference are coupled into a single mixer making a heterodyne measurement of the phase difference which is 1% of the total phase change experienced by each beam separately. This measure of the differential phase ...

متن کامل

Initial Cavity Ring-Down Density Measurement on a 6-kW Hall Thruster

We present the initial results from a cavity ring-down sensor for measuring the density of sputtered boron atoms originating from the discharge channel of a 6-kW Hall thruster. The sensor traps 250 nm light in a high-finesse cavity to greatly increase its sensitivity to boron atoms. Measurements were obtained with the thruster operating at seven conditions spanning discharge voltages from 150 t...

متن کامل

Electron density measurement of a colliding plasma using soft-x-ray laser interferometry

We have used a soft-x-ray laser interferometer to study the collision and subsequent interaction of counterstreaming high-density plasmas. The measured density profiles show the evolution of the colliding plasmas from interpenetration, when the low-density edge of the plasmas first collide, to stagnation at the symmetry plane with density building at the symmetry plane. We compare the measured ...

متن کامل

Electron Trajectory Simulation in Experimental Hall Thruster Fields

The correct approach to electron transport modeling in Hall thrusters is an open question in the field and is compounded by a lack of comparative studies on the relative influence of various proposed electron transport mechanisms in the thruster plume. Lacking an analytical model for transport, empirical coefficients are used in most models to reproduce major discharge parameters like the total...

متن کامل

Hybrid Modeling of a Hall Thruster Using Hyperbolic System of Electron Conservation Laws

The hyperbolic-equation system (HES) approach is applied to the calculation of a Hall thruster using the hybrid particle-in-cell (PIC) method. The HES approach enables accurate computations of magnetized electron fluids in quasi-neutral plasmas with a simple structured mesh. SPT-100 thruster is assumed as the calculation condition. The calculation results indicate that the Bohm criterion is sat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Propulsion and Power

سال: 2021

ISSN: ['1533-3876', '0748-4658']

DOI: https://doi.org/10.2514/1.b38163