Electrochemical sensor for selective tyramine determination, amplified by a molecularly imprinted polymer film

نویسندگان

چکیده

A molecularly imprinted polymer (MIP) film based electrochemical sensor for selective determination of tyramine was devised, fabricated, and tested. Tyramine is generated in smoked fermented food products. Therefore, it may serve as a marker the rottenness these Importantly, intake large amounts by patients treated with monoamine oxidase (MAO) inhibitors lead to “cheese effect”, namely, dangerous hypertensive crisis. The limit detection at S/N = 3 chemosensor, both differential pulse voltammetry (DPV) impedance spectroscopy (EIS) determinations, use Fe(CN)64-/Fe(CN)63- redox probe, 159 168 µM tyramine, respectively. linear dynamic concentration range 290 2.64 mM tyramine. chemosensor highly respect glucose, urea, creatinine interferences. Its DPV determined apparent imprinting factor 5.6. Moreover, mechanism “gate effect” operation film-coated electrodes unraveled.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin

A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...

متن کامل

Development of a Molecularly Imprinted Polymer-Based Sensor for the Electrochemical Determination of Triacetone Triperoxide (TATP)

The explosive triacetone triperoxide (TATP), which can be prepared from commercially readily available reagents following an easy synthetic procedure, is one of the most common components of improvised explosive devices (IEDs). Molecularly-imprinted polymer (MIP) electrochemical sensors have proved useful for the determination of different compounds in different matrices with the required sensi...

متن کامل

Molecularly Imprinted Polymers Based Electrochemical Sensor for 2,4-Dichlorophenol Determination

A molecularly imprinted polymers based electrochemical sensor was fabricated by electropolymerizing pyrrole on a Fe3O4 nanoparticle modified glassy carbon electrode. The sensor showed highly catalytic ability for the oxidation of 2,4-dichlorophenol (2,4-DCP). Square wave voltammetry was used for the determination of 2,4-DCP. The oxidation peak currents were proportional to the concentrations of...

متن کامل

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

A New Potentiometric Sensor for Determination and Screening Phenylalanine in Blood Serum Based on Molecularly Imprinted Polymer

Methods routinely utilized for detection of phenylalanine in new-born blood consist of enzymatic assays, lacking sensitivity and HPLC assays which are expensive and time-consuming to conduct. We, here, report for the first time, the construction of a phenylalanine sensitive electrode, on the basis of a selective molecularly imprinted polymer, offering sensitivity, economy and ease of use for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioelectrochemistry

سال: 2021

ISSN: ['1878-562X', '1567-5394']

DOI: https://doi.org/10.1016/j.bioelechem.2020.107695