Electrocatalytic C–H phosphorylation through nickel(III/IV/II) catalysis

نویسندگان

چکیده

•Electro-oxidative C–H phosphorylation of arenes and alkenes•Chemical oxidants are not required in an undivided cell setup•Sustainable 3d nickela-electrocatalysis with H2 as the only byproduct•Mechanistic insights by NMR spectroscopy, X-ray analysis, mass spectrometry, CV Phosphorus-containing molecules play a pivotal role numerous applied areas have transformative applications molecular syntheses medicinal chemistry, well crop-protection agents pharmaceutical industries. As consequence, there is continued strong demand for resource-economical strategies their assembly. Although direct methods C–H/C–P functionalizations particularly attractive, thus far they largely relied on precious-transition-metal catalysts toxic or expensive chemical oxidants, jeopardizing overall efficiency. In sharp contrast, we herein disclose sustainable strategy resource-efficient access to plethora aryl alkenyl phosphonates phosphines means electro-oxidative nickela-electrocatalysis. Key our success were detailed spectroscopic computational mechanistic into nickel(III/IV) manifold through oxidation-induced reductive elimination. was achieved Earth-abundant nickel waste-free electricity redox surrogate. The robust nickela-electrooxidative activation arenes, heteroarenes, olefins diverse phosphonating reagents successfully delivered arylphosphonates, phenylphosphine oxides, diazaphospholidine oxides relevance bioactive compounds materials. guanidine-assisted electrooxidative C–P formation avoided hydrogen sole byproduct. Catalytically relevant nickel(II) nickel(III) intermediates isolated fully characterized diffraction analysis. complexes observed operando high-resolution electrospray ionization spectrometry (HR-ESI-MS) monitoring. Cyclic voltammetry analysis density functional theory (DFT) calculations provided evidence nickel(III/IV/II) manifold. Arylphosphonates widely utilized structural motifs agrochemical industries,1Baguley T.D. Xu H.-C. Chatterjee M. Nairn A.C. Lombroso P.J. Ellman J.A. Substrate-based fragment identification development selective, nonpeptidic inhibitors striatal-enriched protein tyrosine phosphatase.J. Med. Chem. 2013; 56: 7636-7650Crossref PubMed Scopus (23) Google Scholar,2Dang Q. Liu Y. Cashion D.K. Kasibhatla S.R. Jiang T. Taplin F. Jacintho J.D. Li H. Sun Z. Fan et al.Discovery series phosphonic acid-containing thiazoles orally bioavailable diamide prodrugs that lower glucose diabetic animals inhibition fructose-1,6-bisphosphatase.J. 2011; 54: 153-165Crossref (136) Scholar material science,3Queffélec C. Petit Janvier P. Knight D.A. Bujoli B. Surface modification using acids esters.Chem. Rev. 2012; 112: 3777-3807Crossref (593) Scholar,4Gagnon K.J. Perry H.P. Clearfield A. Conventional unconventional metal–organic frameworks based phosphonate ligands: MOFs UMOFs.Chem. 1034-1054Crossref (504) ligand design.5Ma Y.-N. S.-X. Yang S.-D. New approaches biaryl-based phosphine synthesis via PO directed functionalizations.Acc. Res. 2017; 50: 1480-1492Crossref (130) Scholar, 6Bayne J.M. Stephan D.W. Phosphorus lewis acids: emerging reactivity catalysis.Chem. Soc. 2016; 45: 765-774Crossref 7Tang W. Zhang X. chiral phosphorus ligands enantioselective hydrogenation.Chem. 2003; 103: 3029-3070Crossref (2017) 8Helmchen G. Pfaltz Phosphinooxazolines--a new class versatile, modular P,N-ligands asymmetric catalysis.Acc. 2000; 33: 336-345Crossref (1229) Since Hirao cross-coupling reaction,9Hirao Masunaga Ohshiro Agawa A novel dialkyl arenephosphonates.Synthesis. 1981; 1981: 56-57Crossref (299) transition-metal-catalyzed bond has emerged efficient route arylphosphonates.10Rout L. Punniyamurthy Recent advances transition-metal-mediated Csp2-B Csp2-P reactions.Coord. 2020; 431: 213675Crossref (16) 11Dutartre Bayardon J. Jugé S. Applications stereoselective P-chirogenic compounds.Chem. 5771-5794Crossref 12Demmer C.S. Krogsgaard-Larsen N. Bunch Review modern introduction acid group.Chem. 111: 7981-8006Crossref (410) gained significant momentum during past decade construction C–C C–Het bonds without prehalogenated substrates,13Rej Ano Chatani Bidentate directing groups: tool functionalization chemistry expedient bonds.Chem. 120: 1788-1887Crossref (393) 14Gandeepan Müller Zell D. Cera Warratz Ackermann transition metals activation.Chem. 2019; 119: 2192-2452Crossref (1003) 15Park Kim Chang Transition metal-catalyzed amination: scope, mechanism, applications.Chem. 117: 9247-9301Crossref (1239) 16He Wasa Chan K.S.L. Shao Yu J.-Q. Palladium-catalyzed transformations alkyl 8754-8786Crossref (1182) 17Davies H.M.L. Morton Collective approach advancing functionalization.ACS Cent. Sci. 3: 936-943Crossref (120) 18Yamaguchi Muto K. Itami Nickel-catalyzed aromatic functionalization.Top. Curr. 374: 55Crossref (57) 19Wencel-Delord Glorius enables rapid late-stage diversification molecules.Nat. 5: 369-375Crossref (1678) 20Hickman A.J. Sanford M.S. High-valent organometallic copper palladium catalysis.Nature. 484: 177-185Crossref (612) 21Mkhalid I.A.I. Barnard J.H. Marder T.B. Murphy Hartwig J.F. C–B 2010; 110: 890-931Crossref (1986) 22Colby Bergman R.G. Rhodium-catalyzed heteroatom-directed 624-655Crossref (3133) phosphonation remains challenging because coordination ability phosphorus-containing sensitivity toward events.23Chen X.-Y. Zou Y.-X. phosphorus-substituted heterocycles, 2009–2019.Adv. Synth. Catal. 362: 1724-1818Crossref (22) 24Cai B.-G. Xuan Xiao W.-J. Visible light-mediated reactions.Science Bulletin. 64: 337-350Crossref (95) 25Kargin Y.M. Budnikova Y.G. Electrochemistry organophosphorus compounds.Russ. Gen. 2001; 71: 1393-1421Crossref (28) To circumvent this problem, palladium-catalyzed intermolecular made possible stoichiometric amounts silver Ag(I) avoiding catalyst poisoning slow addition reagent (Figure 1A).26Feng C.-G. Ye K.-J. Pd(II)-catalyzed bonds.J. Am. 135: 9322-9325Crossref (244) Murakami co-workers elegantly exploited masked, slow-releasing hydroxyalkylphosphonate minimize deactivation metals,27Li Yano Ishida Pyridine-directed C(sp2)–H bonds.Angew. Int. Ed. 52: 9801-9804Crossref (154) such rhodium 1A).28Min Kang Jung Hong (hetero)arenes suitable functionalization.Adv. 358: 1296-1301Crossref (42) Likewise, Chen, Yu, described copper-catalyzed transformation benzamides employing salt N-methylmorpholine oxide co-oxidants sequential 1A).29Wang Guo R. Wang Chen S.-Y. X.-Q. Copper-catalyzed sp2 Commun. 2014; 12718-12721Crossref Despite achievements transition-metal catalysis,30Yang Han L.-B. bond-forming reactions C–O/P–H catalyzed nickel.J. 2015; 137: 1782-1785Crossref (173) 31Li Huang Dong Ma Peng Silver-catalyzed oxidative C(sp3 )–P P–H cleavage.Angew. 10539-10544Crossref (47) 32He Wu Toste F.D. dual catalytic carbon–phosphorus gold photoredox 6: 1194-1198Crossref above suffer from use special masked reagents.26Feng 27Li 28Min 29Wang Electrosynthesis surfaced increasingly powerful it utilizes inexpensive, safe, environmentally benign electric current mediator, averting costly reductants.33Wang Stahl S.S. Electrochemical oxidation organic at overpotential: accessing broader group compatibility electron–proton transfer mediators.Acc. 53: 561-574Crossref (141) 34Meyer T.H. Choi I. Tian Powering future: how can electrochemistry make difference synthesis?.Chem. 2484-2496Abstract Full Text PDF (79) 35Gandeepan Finger L.H. Meyer metallaelectrocatalysis resource economical syntheses.Chem. 49: 4254-4272Crossref 36Xiong Chemistry electrochemically generated N-centered radicals.Acc. 3339-3350Crossref (321) 37Tang Lei evolution: green way formation.Chem. 2018; 4: 27-45Abstract (434) 38Möhle Zirbes Rodrigo E. Gieshoff Wiebe Waldvogel Modern electrochemical aspects value-added products.Angew. 57: 6018-6041Crossref (506) 39Yan Kawamata Baran P.S. Synthetic since 2000: verge renaissance.Chem. 13230-13319Crossref (1373) 40Feng Smith Moeller K.D. Anodic cyclization enable optimization.Acc. 2346-2352Crossref (118) culminated major C–C, C–O, C–N, C–Hal formations.41Ackermann Metalla-electrocatalyzed earth-abundant beyond.Acc. 84-104Crossref (216) 42Wang Gao Lv Abdelilah R1-H/R2-H evolution photo-/electrochemistry.Chem. 6769-6787Crossref (311) 43Ma Fang Mei T.-S. metal catalysis.ACS 8: 7179-7189Crossref (300) 44Kärkäs M.D. C–N 47: 5786-5865Crossref these indisputable precious 4d metals,45Grayaznova T.V. Dudkina Y.B. Islamov D.R. Kataeva O.N. Sinyashin O.G. Vicic Y.Н. bond.J. Organomet. 785: 68-71Crossref (78) Scholar,46Dudkina Gryaznova Y.H. 2-phenylpyridine presence salts.Russ. Bull. 63: 2641-2646Crossref (19) reports remain scarce. context, recently developed elegant noble 1B).47Wu Z.-J. Su Lin Song Wen T.-B. H.-J. al.Scalable rhodium(III)-catalyzed enabled anodic induced elimination.Angew. Engl. 58: 16770-16774Crossref (63) stark catalysis less toxic, non-precious 3d-metal so underdeveloped both chemically phosphorylations. light previous findings amination48Zhang S.-K. Samanta R.C. Sauermann support nickel(IV).Chem. Eur. 24: 19166-19170Crossref (67) alkoxylation,49Zhang Struwe Hu Nickela-electrocatalyzed alkoxylation secondary alcohols: elimination nickel(III).Angew. 59: 3178-3183Crossref (49) became attracted considerably more cost-efficient equivalent, results which summarized 1C). features comprise (1) phosphorylation, (2) absence byproduct, (3) unmasked within operationally simple setup, (4) isolation catalytically competent activated nickelacycles, (5) cyclic (CV), functinal calculations, electrospray-ionization supporting mechanism. We initiated studies probing reaction conditions benzamide 1a 2a non-sequential manner S1). After considerable experimentation (Tables 1 S1–S6), desired product 3 high yields base 1,1,3,3-tetramethylguanidine (TMG) additive Ni(DME)Cl2 when graphite felt (GF) anode (Ni) foam cathode used (Table 1, entries 1–6). found be advantageous formation, whereas other additives (such di-tBubpy) inhibited 5–9). Control experiments verified base, Ni catalyst, 10–12). complexes, instance, Ni(cod)2, NiI2, NiCl2, well, albeit slightly reduced efficacy entry 13; Table S4). It noteworthy proved effective electrocatalyzed than metals, cobalt, copper, manganese, iron. adding protocol reflects robustness over 5d palladium, ruthenium, iridium, 14–20; S6).Table 1Optimization phosphorylationEntryBaseAdditive[TM]3aReaction conditions: (0.25 mmol), (0.50 [TM] (10 mol %), (20 (1.0 equiv), TBAI (0.125 DMA (3.0 mL), CCE = 8.0 mA, 12 h, N2, GF cathode, yield.1NaO2CAd(4-CF3C6H4)3PNi(DME)Cl262%2NaOAc(4-CF3C6H4)3PNi(DME)Cl2(35%)bYields determined 1H 1,3,5-(MeO)3C6H3 internal standard.3DBU(4-CF3C6H4)3PNi(DME)Cl2(51%)bYields standard.4DBN(4-CF3C6H4)3PNi(DME)Cl2(60%)bYields standard.5TMG(4-CF3C6H4)3PNi(DME)Cl272% (74%)bYields standard.6TMG[3,5-(CF3)2C6H3]3PNi(DME)Cl273% standard.7TMGXphosNi(DME)Cl267%8TMG–Ni(DME)Cl245% (50%)bYields standard.9TMGdi-tBubpyNi(DME)Cl2–10–[3,5-(CF3)2C6H3]3PNi(DME)Cl2–11TMG[3,5-(CF3)2C6H3]3P−–12TMG[3,5-(CF3)2C6H3]3PNi(DME)Cl2–cWithout current.13TMG[3,5-(CF3)2C6H3]3PNi(cod)266%14TMG[3,5-(CF3)2C6H3]3PCu(OAc)2·H2O(<5%)bYields standard.15TMG[3,5-(CF3)2C6H3]3PCo(OAc)2·4H2O(<5%)bYields standard.16TMG[3,5-(CF3)2C6H3]3PMn(OAc)2(8%)bYields standard.17TMG[3,5-(CF3)2C6H3]3PFe(acac)3(<5%)bYields standard.18TMG[3,5-(CF3)2C6H3]3PPdCl2–19TMG[3,5-(CF3)2C6H3]3P[Cp∗RhCl2]2–d[TM] (5.0 %). DMA, N,N-dimethylacetamide; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; DBN, 1,5-diazabicyclo[4.3.0]non-5-ene; TMG, tetramethylguanidine; di-tBubpy, 4,4′-di-tert-butyl-2,2′-dipyridyl.20TMG[3,5-(CF3)2C6H3]3P[Cp∗IrCl2]2–d[TM] 4,4′-di-tert-butyl-2,2′-dipyridyl.a Reaction yield.b Yields standard.c Without current.d 4,4′-di-tert-butyl-2,2′-dipyridyl. Open table tab With optimized electrocatalytic hand, influence N-substitution pattern nickela-electrocatalyzed investigated 2, 3–8; S7). line studies,49Zhang electron nitrogen atoms quinoline moiety influences 3–8). Other N,N- N,O-bidentate groups failed facilitate Subsequently, probed versatility nickela-electrochemical differently functionalized heteroarenes 9–27). Thus, diversely decorated substrates bearing valuable groups, halos, esters, amines, tolerated (14–16). position control regime demonstrated meta-substituent (19–21). limited but hereoarenes likewise phosphorylated products 24 25 even shorter time. Remarkably, aminoquinoline monodentate pyridine resulted selective amide-guided 26. Benzamide protected amino furnish peptide 27 notable racemization (Figures S68 S69). scaled up loss efficiency (17, 1.31 g). reflected alkenes 1′ 3, 28–36). Hence, cyclohexene reacted efficiently phosphorylating reagents, including thereby furnishing 28–30 improved 32. Furthermore, acyclic olefinic carboxamides, α- α,β-substituted acrylic acids, afforded corresponding 34 35 partial isomerization S22 S23), diene under otherwise identical S7, 36). Moreover, highlighted range electronically sterically different phosphonates, 2 4, 37–48). 41 derived natural d-menthol obtained yield. Bulky six- seven-membered (42–44) tolerated. delight, mono- dialkylphosphine also amenable arylphosphonates 45 46. diarylphosphine converted triphenylphosphine 47, could ligands.50Li Lu L.-Q. Das Pisiewicz Junge Beller Highly chemoselective metal-free reduction phosphines.J. 134: 18325-18329Crossref (165) electron-deficient, encumbered diaminophosphine 48, compound potentially flame retardant epoxy resins.51Li Cao Yao Reactive phosphonamide resins.J. Appl. Polym. 47411Crossref (12) gain nickela-electrocatalytic conducted 5 S2–S23). Intermolecular competition between diisopropyl (2a) morpholine (2n) clearly showed achieving S7–S10). kinetic isotope effect kH/kD ≈ 3.2 independent experiments, indicating rate-limiting step 5A S17). H/D exchange reisolated isotopically labeled tBuOD cosolvent S13–S15). typical radical scavenger, 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), 4 equiv, did prevent activation, rendering radicals unlikely operative 5B). Headspace gas chromatography confirmed formed byproduct S18 S19). monitored consumption along phosphonated no sign induction period S24 S25). HR-ESI-MS, two 6 S26–S31). peak 581 (m/z) related species NiII-M1 NiII-M2, NiIV-M3 NiII-M4 745 6). Ni-amide dimer NiII-M5 6D) eventually after approximately 7 h. order get further mechanism carried out DFT key steps PBE0-D3(BJ)/def2-TZVP+SMD(DMA)//PBE0-D3(BJ)/def2-SVP level theory.52For details, please see supplemental information.Google Our indicated activations TMG-coordinated NiII-H1 S55, barrier 27.6 kcal/mol) Ni(III) NiIII-H3 27.3 favorable, NiII-H5 shows unfavorable energy 33.7 kcal/mol S56). NiIV-H7 NiII-H9 energetically viable S57, 2.8 kcal/mol). Additionally, orbital process intermediate NiIII-H10 Ni(IV) NiIV-H11, occurs non-cyclometallated S59). Before following state TS(H7-H8) S57), spin-crossover event triplet singlet Ni-H7 will complex. double-occupied highest occupied unoccupied lowest S58). NiII-M6 bulky carboxylate NaO2CAd used, NiIII-M7 assistance 7A S32). Notably, TMG proper coordinating stabilize initially nickelation complex forming stable NiII-H2, crystallography 7B, 7C, S33, S34). NiII-H2 easily oxidized generate cyclonickelated substrate 7B S39). Treating led homo- cross-cyclonickel dimers, suggesting protodemetallation followed irreversible S13, S14, S40–S44). waves potential −0.20 V versus Fc0/+ +0.50 Fc0/+, providing Ni(II/III) Ni(III/IV) events 7D S64–S67). Accordingly, 7E S45–S51). highlight outstanding approach, set AgOAc, Cu(OAc)2, Mn(OAc)3, K2S2O8, PhI(OAc)2, oxygen, all fell short 8A). These emphasize served low-cost oxidant unique transformation. studied comparing AgOAc applying 8B 8C). therefore NIII-M7, Ni(II), conversion final 8B, 8C, S39, S47, S52–S54). Based studies, plausible cycle depicted Figure 9. Initial upon NiIII-B. Subsequent sets stage NiIV-E. proposed NiII-G coordination.53Puleo T.R. Sujansky S.J. Wright S.E. Bandar J.S. Organic superbases recent synthetic methodology research.Chem. 2021; 27: 4216-4229https://doi.org/10.1002/chem.202003580Crossref (13) Scholar,54Ishikawa Superbases Synthesis: Guanidines, Amidines, Phosphazenes Related Organocatalysts. John Wiley & Sons, 2009Crossref (426) 8; S2, 9) directly participate on-cycle S35–S38), suggested off-cycle improve stability.55Xu Tris (pentafluorophenyl) phosphine: electrolyte voltage li-ion batteries.Electrochem. 18: 123-126Crossref (114) Scholar,56Haregewoin A.M. Wotango A.S. Hwang B.-J. Electrolyte lithium ion battery electrodes: progress perspectives.Energy Environ. 9: 1955-1988Crossref thus-formed protons deliver cathodic reduction. method setup. Versatile broad scope phosphorous oxides. cost-effective available generating detail cyclometallic Ni(II) intermediates. Experimental cyclovoltammetric strongly

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ch-ch-ch-ch-Changes

Change is not made without inconvenience, even from worse to better. Richard Hooker, as quoted in the preface of Samuel Johnson's A Dictionary of the English Language Oh, so they have internet on computers now! Homer Simpson It is with great pleasure that I announce the rebirth of the former print journal of the Canadian Geriatrics Society as a new online publication, the Canadian Geriatrics Jo...

متن کامل

Phosphorylation of spliceosomal protein SAP 155 coupled with splicing catalysis.

The U2 snRNP component SAP 155 contacts pre-mRNA on both sides of the branch site early in spliceosome assembly and is therefore positioned near or at the spliceosome catalytic center. We have isolated a cDNA encoding human SAP 155 and identified its highly related Saccharomyces cerevisiae homolog (50% identity). The carboxy-terminal two-thirds of SAP 155 shows the highest conservation and is r...

متن کامل

Calmodulin phosphorylation and modulation of endothelial nitric oxide synthase catalysis.

The endothelial NO synthase (eNOS) is regulated by diverse protein kinase pathways, yet eNOS activity ultimately depends on the ubiquitous calcium regulatory protein calmodulin (CaM). In these studies, we establish that CaM itself undergoes phosphorylation in endothelial cells and that CaM phosphorylation attenuates eNOS activation. Using [(32)P]orthophosphoric acid biosynthetic labeling, we fo...

متن کامل

Decarboxylative Peptide Macrocyclization through Photoredox Catalysis.

A method for the decarboxylative macrocyclization of peptides bearing N-terminal Michael acceptors has been developed. This synthetic method enables the efficient synthesis of cyclic peptides containing γ-amino acids and is tolerant of functionalities present in both natural and non-proteinogenic amino acids. Linear precursors ranging from 3 to 15 amino acids cyclize effectively under this phot...

متن کامل

Trypsin specificity increased through substrate-assisted catalysis.

Histidine 57 of the catalytic triad of trypsin was replaced with alanine to determine whether the resulting variant would be capable of substrate-assisted catalysis [Carter, P., & Wells, J. A. (1987) Science 237, 394-9]. A 2.5-fold increase in kcat/Km was observed on tri- or tetrapeptide substrates containing p-nitroanilide leaving groups and histidine at P2. In contrast, hydrolysis of peptide ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2021

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2021.04.009