Electrical Load Demand Forecasting Using Feed-Forward Neural Networks
نویسندگان
چکیده
The higher share of renewable energy sources in the electrical grid and electrification significant sectors, such as transport heating, are imposing a tremendous challenge on operation system due to increase complexity, variability uncertainties associated with these changes. recent advances computational technologies ever-growing data availability allowed development sophisticated efficient algorithms that can process information at very fast pace. In this sense, use machine learning models has been gaining increased attention from electricity sector it provide accurate forecasts behaviour generation consumption, helping all stakeholders optimize their activities. This work develops proposes methodology enhance load demand using model, namely feed-forward neural network (FFNN), by incorporating an error correction step involves prediction initial forecast errors another FFNN. results showed proposed was able significantly improve quality forecasts, demonstrating better performance than benchmark models.
منابع مشابه
Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort-term and Medium-term Gas Demand Load Forecasting by Neural Networks
The ability of Artificial Neural Network (ANN) for estimating the natural gas demand load for the next day and month of the populated cities has shown to be a real concern. As the most applicable network, the ANN with multi-layer back propagation perceptrons is used to approximate functions. Throughout the current work, the daily effective temperature is determined, and then the weather data w...
متن کاملImage Compression Using Feed Forward Neural Networks
Image compression technique is used to reduce the number of its required in representing image, which helps to reduce the storage space and transmission cost. In the present research work back propagation neural network training algorithm has been used. Back propagation neural network algorithm helps to increase the performance of the system and to decrease the convergence time for the training...
متن کاملHourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks
In this work, the hourly solar radiation data collected during the period August 1, 2005–July 30, 2006 from the solar observation station in Iki Eylul campus area of Eskisehir region are studied. A two-dimensional (2-D) representation model of the hourly solar radiation data is proposed. The model provides a unique and compact visualization of the data for inspection, and enables accurate forec...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2021
ISSN: ['1996-1073']
DOI: https://doi.org/10.3390/en14227644