Electric Field Effects on Armchair MoS2 Nanoribbons
نویسندگان
چکیده
منابع مشابه
Investigation of electron correlation effects in armchair silicene nanoribbons
In this study, the electronic structure of armchair silicene nanoribbons (ASiNRs) is investigated for various widths using first-principle calculations and the framework of the density functional theory. Electronic structure of ASiNRs shows a direct band gap which is decreased with increasing the nanoribbon's width, showing an oscillatory behavior. The effective Coulomb interaction between loca...
متن کاملElectric field effects in zigzag edged graphene nanoribbons
We investigate the magnetic ordering in zigzag edged graphene nanoribbons under cross-ribbon electric fields by using the Hubbard model within the unrestricted Hatree-Fock approximation. In the absence of applied electric field, the ground state is an “edge-magnetized state” with magnetic moments mainly localized on the edges, where the moments on the two edges are mutually antiparallel. Under ...
متن کاملUltra-narrow metallic armchair graphene nanoribbons
Graphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, w...
متن کاملElectronic properties of twisted armchair graphene nanoribbons
We study the effect of twist on the electronic structure of H-terminated armchair graphene nanoribbons, for both relaxed and unrelaxed unit cell size. We investigate the band gap change as a function of the twist angle for different ribbon widths. In the case of unrelaxed unit cell size, the band gap closes for smaller twist angles as opposed to relaxed unit cell size. We calculate strain energ...
متن کاملElectric-field-induced Majorana fermions in armchair carbon nanotubes.
We consider theoretically an armchair carbon nanotube (CNT) in the presence of an electric field and in contact with an s-wave superconductor. We show that the proximity effect opens up superconducting gaps in the CNT of different strengths for the exterior and interior branches of the two Dirac points. For strong proximity induced superconductivity the interior gap can be of the p-wave type, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Nano
سال: 2012
ISSN: 1936-0851,1936-086X
DOI: 10.1021/nn301505x