Ekeland Variational Principle in asymmetric locally convex spaces
نویسندگان
چکیده
منابع مشابه
Vectorial Form of Ekeland-Type Variational Principle in Locally Convex Spaces and Its Applications
By using a Danes̆’ drop theorem in locally convex spaces we obtain a vectorial form of Ekelandtype variational principle in locally convex spaces. From this theorem, we derive some versions of vectorial Caristi-Kirk’s fixed-point theorem, Takahashi’s nonconvex minimization theorem, and Oettli-Théra’s theorem. Furthermore, we show that these results are equivalent to each other. Also, the existen...
متن کاملAsymmetric locally convex spaces
The aim of the present paper is to introduce the asymmetric locally convex spaces and to prove some basic properties. Among these I do mention the analogs of the EidelheitTuckey separation theorems, of the Alaoglu-Bourbaki theorem on the weak compactness of the polar of a neighborhood of 0, and a Krein-Milman-type theorem. These results extend those obtained by Garcı́a-Raffi et al. (2003) and Co...
متن کاملEkeland ' S Principle in F - Type Spaces 3
We shall show that a recent version of Ekeland's principle in F-type topological spaces due to Fang from 1996 is implied by the Brezis-Browder principle on ordered sets. We give a series of equivalent formulations of Ekeland's principle in F-type topo-logical spaces, i.e. Penot's ower petal theorem, Takahashi's minimization principle and two theorems due to Oettli and Th era and show the equiva...
متن کاملMinimax Theorems on C1 Manifolds via Ekeland Variational Principle
Let X be a Banach space and Φ : X → R of class C1. We are interested in finding critical points for the restriction of Φ to the manifold M = {u ∈ X : G(u) = 1}, where G : X → R is a C1 function having 1 as a regular value. A point u ∈M is a critical point of the restriction of Φ to M if and only if dΦ(u)|TuM = 0 (see the definition in Section 2). Our purpose is to prove two general minimax prin...
متن کاملCritical Point Theorems and Ekeland Type Variational Principle with Applications
We introduce the notion of λ-spaces which is much weaker than cone metric spaces defined by Huang and X. Zhang 2007 . We establish some critical point theorems in the setting of λ-spaces and, in particular, in the setting of complete cone metric spaces. Our results generalize the critical point theorem proposed by Dancs et al. 1983 and the results given by Khanh and Quy 2010 to λ-spaces and con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2012
ISSN: 0166-8641
DOI: 10.1016/j.topol.2012.04.015